12 research outputs found

    Relativistic Electron Losses in the Outer Radiation Belts

    Get PDF
    Relativistic electrons in the magnetosphere are both energized and lost via their interaction with plasma waves such as whister chorus, plasmaspheric hiss and EMIC waves. These waves are usually localized in different regions of the magnetosphere as well as being located either inside or outside the plasmapause. We study relativistic electron losses in the outer radiation belts by characterizing decay times scales at low and high altitudes and their relationship to microbursts. We use data collected by SAMPEX, a low Earth orbiting spacecraft in a highly inclined polar orbit and the HEO spacecraft in a high altitude Molniya orbit. The sensors onboard these spacecraft measure electrons of energies > 0.6 MeV, > 1 MeV, > 3 MeV, 2-6 MeV, 3-16 MeV. High time resolution data enable identifying and characterizing electron microbursts observed at low altitudes

    Space Plasma Physics: A Review

    Get PDF
    Owing to the ever-present solar wind, our vast solar system is full of plasmas. The turbulent solar wind, together with sporadic solar eruptions, introduces various space plasma processes and phenomena in the solar atmosphere all the way to Earth’s ionosphere and atmosphere and outward to interact with the interstellar media to form the heliopause and termination shock. Remarkable progress has been made in space plasma physics in the last 65 years, mainly due to sophisticated in situ measurements of plasmas, plasma waves, neutral particles, energetic particles, and dust via space-borne satellite instrumentation. Additionally, high-technology ground-based instrumentation has led to new and greater knowledge of solar and auroral features. As a result, a new branch of space physics, i.e., space weather, has emerged since many of the space physics processes have a direct or indirect influence on humankind

    EMIC wave events during the four GEM QARBM challenge intervals

    Get PDF
    This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM “Quantitative Assessment of Radiation Belt Modeling” focus group: March 17‐18 (Stormtime Enhancement), May 31‐June 2 (Stormtime Dropout), September 19‐20 (Non‐storm Enhancement), and September 23‐25 (Non‐storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near‐equatorial magnetosphere and from several arrays of ground‐based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low‐altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near‐equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the REPT and MagEIS instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~ 4.0. In three other cases identifiable smaller and more short‐lived dropouts appeared, and in five other cases these waves evidently had little or no effect

    On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen probes observations

    No full text
    Using Van Allen Probes Energetic Particle, Composition, and Thermal Plasma-Relativistic Electron-Proton Telescope (ECT-REPT) observations, we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion, and no change in flux values depends strongly on L and energy. Enhancement events are more common for similar to 2 MeV electrons at L similar to 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no-change events are more frequent at L 4.5 the probability of enhancement, depletion, or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at geosynchronous orbit may be used as a proxy to monitor E >= 1.8 MeV electrons in the outer belt.JHU/APL 921647 NASA Prime contract NAS5-01072 Van Allen Probe mission funds at NASA/GSFC CONICyT Chile through FONDECyT 11150055 Conicyt PIA project ACT1405 CONICy

    The Relativistic Electron-Proton Telescope (REPT) Investigation: Design, Operational Properties, and Science Highlights

    No full text
    Abstract The Relativistic Electron-Proton Telescope (REPT) instruments were designed to measure ∼2 to >18 MeV electrons and ∼18 to > 115 MeV protons as part of the science payloads onboard the dual Radiation Belt Storm Probes (RBSP) spacecraft. The REPT instruments were turned on and configured in their science acquisition modes about 2 days after the RBSP launch on 30 August 2012. The REPT-A and REPT-B instruments both operated flawlessly until mission cessation in 2019. This paper reviews briefly the REPT instrument designs, their operational performance, relevant mode changes and trending over the course of the mission, as well as pertinent background effects (and recommended corrections). A substantial part of this paper highlights discoveries and significant advancement of our understanding of physical-processes obtained using REPT data. We do this for energetic electrons primarily in the outer Van Allen belt and for energetic protons in the inner Van Allen zone. The review also describes several ways in which REPT data were employed for important space weather applications. The paper concludes with assessments of ways that REPT data might further be exploited to continue to advance radiation belt studies. The paper also discusses the pressing and critical need for the operational continuation of REPT-like measurements both for science and for space situational awareness

    Artificial Neural Networks for Determining Magnetospheric Conditions

    No full text
    This chapter presents a neural-network-based technique that allows for the reconstruction of the global, time-varying distribution of some physical quantity Q, that has been sparsely sampled at various locations within the magnetosphere, and at different times. We begin with a general introduction to the problem of prediction and specification, and why it is important and difficult to achieve with existing methods. We then provide a basic introduction to neural networks, and describe our technique using the specific example of reconstructing the electron plasma density in the Earth's inner magnetosphere on the equatorial plane. We then show more advanced uses of the technique, including 3D reconstruction of the plasma density, specification of chorus and hiss waves, and energetic particle fluxes. We summarize and conclude with a general discussion of how machine learning techniques might be used to advance the state-of-the-art in space weather prediction, and insight discovery
    corecore