7,572 research outputs found
Kinematics of rigid bodies in spaceflight
Rigid rotating body kinematic equations for use in space flight mechanic
Prototype laser-diode-pumped solid state laser transmitters
Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique
Zero-Bias Anomalies in Narrow Tunnel Junctions in the Quantum Hall Regime
We report on the study of cleaved-edge-overgrown line junctions with a
serendipitously created narrow opening in an otherwise thin, precise line
barrier. Two sets of zero-bias anomalies are observed with an enhanced
conductance for filling factors and a strongly suppressed conductance
for . A transition between the two behaviors is found near . The zero-bias anomaly (ZBA) line shapes find explanation in
Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA
for occurs from strong backscattering induced by suppression of
quasiparticle tunneling between the edge channels for the Landau
levels. The ZBA for arises from weak tunneling of quasiparticles
between the edge channels.Comment: version with edits for clarit
Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zincblende phase and the semi-metallic or metallic character of the high-pressure phases
We carried out high-pressure resistivity and Hall-effect measurements in
single crystals of CdTe and ZnTe up to 12 GPa. Slight changes of transport
parameters in the zincblende phase of CdTe are consitent with the shallow
character of donor impurities. Drastic changes in all the transport parameters
of CdTe were found around 4 GPa, i.e. close to the onset of the cinnabar to
rock-salt transition. In particular, the carrier concentration increases by
more than five orders of magnitude. Additionally, an abrupt decrease of the
resistivity was detected around 10 GPa. These results are discussed in
comparison with optical, thermoelectric, and x-ray diffraction experiments. The
metallic character of the Cmcm phase of CdTe is confirmed and a semi-metallic
character is determined for the rock-salt phase. In zincblende ZnTe, the
increase of the hole concentration by more than two orders of magnitude is
proposed to be due to a deep-to-shallow transformation of the acceptor levels.
Between 9 and 11 GPa, transport parameters are consistent with the
semiconducting character of cinnabar ZnTe. A two orders of magnitude decrease
of the resistivity and a carrier-type inversion occurs at 11 GPa, in agreement
with the onset of the transition to the Cmcm phase of ZnTe. A metallic
character for this phase is deduced.Comment: 20 pages, 4 figure
Spin Injection into a Luttinger Liquid
We study the effect of spin injection into a Luttinger liquid. The
spin-injection-detection setup of Johnson and Silsbee is considered; here spins
injected into the Luttinger liquid induce, across an interface with a
ferromagnetic metal, either a spin-dependent current () or a
spin-dependent boundary voltage (). We find that the spin-charge
separation nature of the Luttinger liquid affects and in a very
different fashion. In particular, in the Ohmic regime, depends on the
spin transport properties of the Luttinger liquid in essentially the same way
as it would in the case of a Fermi liquid. The implications of our results for
the spin-injection-detection experiments in the high cuprates are
discussed.Comment: 4 pages, REVTEX, 2 figures. Minor changes and corrections to typos.
To appear in Phys. Rev. Let
Experimental Predictions of The Functional Response of A Freshwater Fish
The functional response is the relationship between the feeding rate of an animal and its food density. It is reliant on two basic parameters; the volume searched for prey per unit time (searching rate) and the time taken to consume each prey item (handling time). As fish functional responses can be difficult to determine directly, it may be more feasible to measure their underlying behavioural parameters in controlled conditions and use these to predict the functional response. Here, we tested how accurately a Type II functional response model predicted the observed functional response of roach Rutilus rutilus, a visually foraging fish, and compared it with Type I functional response. Foraging experiments were performed by exposing fish in tank aquaria to a range of food densities, with their response captured using a two-camera videography system. This system was validated and was able to accurately measure fish behaviour in the aquaria, and enabled estimates of fish reaction distance, swimming speed (from which searching rate was calculated) and handling time to be measured. The parameterised Type II functional response model accurately predicted the observed functional response and was superior to the Type I model. These outputs suggest it will be possible to accurately measure behavioural parameters in other animal species and use these to predict the functional response in situations where it cannot be observed directly
Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas
The photon-absorption edge in a weakly interacting one-dimensional electron
gas is studied, treating backscattering of conduction electrons from the core
hole exactly. Close to threshold, there is a power-law singularity in the
absorption, , with where is the forward scattering
phase shift of the core hole. In contrast to previous theories, is
finite (and universal) in the limit of weak core hole potential. In the case of
weak backscattering , the exponent in the power-law dependence of
absorption on energy crosses over to a value above an energy scale , where is a dimensionless measure of the
electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-
Separately contacted electron-hole double layer in a GaAs/AlxGa1−xAs heterostructure
We describe a method for creating closely spaced parallel two-dimensional electron and hole gases confined in 200 Å GaAs wells separated by a 200 Å wide AlxGa1−xAs barrier. Low-temperature ohmic contacts are made to both the electrons and holes, whose densities are individually adjustable between 10^(10)/cm^2 to greater than 10^(11)/cm^2
Professional Development and Faith Integration in Sport Management Education
Professional development is a critical component of academia and should support the institution’s vision, mission, and organizational goals (Lee & Briggs, 2020; 2021). The amount and type of professional development should be congruent with institutional expectations (COSMA, 2016), according to how faculty are to be evaluated, tenured, and promoted. When emphasizing professional development that integrates one’s faith, there are unique prospects to embody a Christian ethos. Hence, this article concentrates on professional development opportunities at faith-based institutions, notably Christian faculty members in the academic disciplines of Christian Society for Kinesiology, Leisure & Sport Studies (CSKLS). Using the specific emphasis on the academic field of Sport Management, detailed nuances and exemplar applications of professional development are provided using Boyer’s Scholarly domains as a framework
Effects of interaction on an adiabatic quantum electron pump
We study the effects of inter-electron interactions on the charge pumped
through an adiabatic quantum electron pump. The pumping is through a system of
barriers, whose heights are deformed adiabatically. (Weak) interaction effects
are introduced through a renormalisation group flow of the scattering matrices
and the pumped charge is shown to {\it always} approach a quantised value at
low temperatures or long length scales. The maximum value of the pumped charge
is set by the number of barriers and is given by . The
correlation between the transmission and the charge pumped is studied by seeing
how much of the transmission is enclosed by the pumping contour. The (integer)
value of the pumped charge at low temperatures is determined by the number of
transmission maxima enclosed by the pumping contour. The dissipation at finite
temperatures leading to the non-quantised values of the pumped charge scales as
a power law with the temperature (), or with
the system size (), where is a
measure of the interactions and vanishes at . For a double
barrier system, our result agrees with the quantisation of pumped charge seen
in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from
author
- …