79 research outputs found

    Potential risks of iatrogenic complications of nerve conduction studies (NCS) and electromyography (EMG)

    Get PDF
    AbstractNerve conduction and electromyography studies are generally well tolerated and pose little risk to patients of serious adverse events in the hands of a well-trained competent practitioner. However, some patients and certain examinations do carry a higher risk of potential complications. It is good medical practice to inform patients of any risks, their potential severity and relative frequency. In order to obtain informed consent a dialogue should take place about the nature, purpose and effects of the studies, so patients can decide if they wish to undergo the proposed investigation. In this educational review we identify those procedures and patients at risk, and provide pragmatic practice recommendations for managing these material risks

    Dynamics of the Tippe Top via Routhian Reduction

    Full text link
    We consider a tippe top modeled as an eccentric sphere, spinning on a horizontal table and subject to a sliding friction. Ignoring translational effects, we show that the system is reducible using a Routhian reduction technique. The reduced system is a two dimensional system of second order differential equations, that allows an elegant and compact way to retrieve the classification of tippe tops in six groups as proposed in [1] according to the existence and stability type of the steady states.Comment: 16 pages, 7 figures, added reference. Typos corrected and a forgotten term in de linearized system is adde

    National Survey of Sea Lice (Lepeophtheirus salmonis Krøyer and Caligus elongatus Nordmann) on Fish Farms in Ireland – 2019

    Get PDF
    Farmed stocks of Atlantic salmon in Ireland are inspected on 14 occasions throughout the year to monitor sea lice levels as part of a national programme. Sea lice are a naturally occurring parasite found on marine fish, including salmonids. They are small ecto-parasitic copepod crustaceans and there are approximately 559 species. The objectives of the National Sea Lice Monitoring Programme are: To provide an objective measurement of infestation levels on farms. To investigate the nature of infestations. To provide management information to drive the implementation of control and management strategies. To facilitate further development and refinement of this strategy. The sea lice control and management strategy has five principal components: Separation of generations. Annual fallowing of sites. Early harvest of two-sea-winter fish. Targeted treatment regimes, including synchronous treatments. Agreed husbandry practices

    Destruction of long-range antiferromagnetic order by hole doping

    Full text link
    We study the renormalization of the staggered magnetization of a two-dimensional antiferromagnet as a function of hole doping, in the framework of the t-J model. It is shown that the motion of holes generates decay of spin waves into ''particle-hole'' pairs, which causes the destruction of the long-range magnetic order at a small hole concentration. This effect is mainly determined by the coherent motion of holes. The value obtained for the critical hole concentration, of a few percent, is consistent with experimental data for the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure

    Spin- and charge-density oscillations in spin chains and quantum wires

    Full text link
    We analyze the spin- and charge-density oscillations near impurities in spin chains and quantum wires. These so-called Friedel oscillations give detailed information about the impurity and also about the interactions in the system. The temperature dependence of these oscillations explicitly shows the renormalization of backscattering and conductivity, which we analyze for a number of different impurity models. We are also able to analyze screening effects in one dimension. The relation to the Kondo effect and experimental consequences are discussed.Comment: Final published version. 15 pages in revtex format including 22 epsf-embedded figures. The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/density-osc.pd

    Enhancement of pair correlation in a one-dimensional hybridization model

    Get PDF
    We propose an integrable model of one-dimensional (1D) interacting electrons coupled with the local orbitals arrayed periodically in the chain. Since the local orbitals are introduced in a way that double occupation is forbidden, the model keeps the main feature of the periodic Anderson model with an interacting host. For the attractive interaction, it is found that the local orbitals enhance the effective mass of the Cooper-pair-like singlets and also the pair correlation in the ground state. However, the persistent current is depressed in this case. For the repulsive interaction case, the Hamiltonian is non-Hermitian but allows Cooper pair solutions with small momenta, which are induced by the hybridization between the extended state and the local orbitals.Comment: 11 page revtex, no figur

    Boundary contributions to specific heat and susceptibility in the spin-1/2 XXZ chain

    Full text link
    Exact low-temperature asymptotic behavior of boundary contribution to specific heat and susceptibility in the one-dimensional spin-1/2 XXZ model with exchange anisotropy 1/2 < \Delta \le 1 is analytically obtained using the Abelian bosonization method. The boundary spin susceptibility is divergent in the low-temperature limit. This singular behavior is caused by the first-order contribution of a bulk leading irrelevant operator to boundary free energy. The result is confirmed by numerical simulations of finite-size systems. The anomalous boundary contributions in the spin isotropic case are universal.Comment: 6 pages, 3 figures; corrected typo

    Spectral functions and pseudogap in the t-J model

    Full text link
    We calculate spectral functions within the t-J model as relevant to cuprates in the regime from low to optimum doping. On the basis of equations of motion for projected operators an effective spin-fermion coupling is derived. The self energy due to short-wavelength transverse spin fluctuations is shown to lead to a modified selfconsistent Born approximation, which can explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates the Fermi surface.Comment: Minor corrections; to appear in Phys. Rev. B (RC

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.

    Spectral functions, Fermi surface and pseudogap in the t-J model

    Full text link
    Spectral functions within the generalized t-J model as relevant to cuprates are analyzed using the method of equations of motion for projected fermion operators. In the evaluation of the self energy the decoupling of spin and single-particle fluctuations is performed. It is shown that in an undoped antiferromagnet (AFM) the method reproduces the selfconsistent Born approximation. For finite doping with short range AFM order the approximation evolves into a paramagnon contribution which retains large incoherent contribution in the hole part of the spectral function as well as the hole-pocket-like Fermi surface at low doping. On the other hand, the contribution of (longitudinal) spin fluctuations, with the coupling mostly determined predominantly by J and next-neighbor hopping t', is essential for the emergence of the pseudogap. The latter shows at low doping in the effective truncation of the large Fermi surface, reduced electron density of states and at the same time quasiparticle density of states at the Fermi level.Comment: RevTex, 13 pages, 11 figures (5 color
    corecore