112 research outputs found
Quantum Transport in Two-Channel Fractional Quantum Hall Edges
We study the effect of backward scatterings in the tunneling at a point
contact between the edges of a second level hierarchical fractional quantum
Hall states. A universal scaling dimension of the tunneling conductance is
obtained only when both of the edge channels propagate in the same direction.
It is shown that the quasiparticle tunneling picture and the electron tunneling
picture give different scaling behaviors of the conductances, which indicates
the existence of a crossover between the two pictures. When the direction of
two edge-channels are opposite, e.g. in the case of MacDonald's edge
construction for the state, the phase diagram is divided into two
domains giving different temperature dependence of the conductance.Comment: 21 pages (REVTeX and 1 Postscript figure
Fermi edge singularities in X-ray spectra of strongly correlated fermions
We discuss the problem of the X-ray absorption in a system of interacting
fermions and, in particular, those features in the X-ray spectra that can be
used to discriminate between conventional Fermi-liquids and novel "strange
metals". Focusing on the case of purely forward scattering off the core-hole
potential, we account for the relevant interactions in the conduction band by
means of the bosonization technique. We find that the X-ray Fermi edge
singularities can still be present, although modified, even if the density of
states vanishes at the Fermi energy, and that, in general, the relationship
between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin
Exact Fermi-edge singularity exponent in a Luttinger liquid
We report the exact calculation of the Fermi-edge singularity exponent for
correlated electrons in one dimension (Luttinger liquid). Focusing on the
special interaction parameter g=1/2, the asymptotic long-time behavior can be
obtained using the Wiener-Hopf method. The result confirms the previous
assumption of an open boundary fixed point. In addition, a dynamic k-channel
Kondo impurity is studied via Abelian bosonization for k=2 and k=4. It is shown
that the corresponding orthogonality exponents are related to the orthogonality
exponent in a Luttinger liquid.Comment: 8 Pages RevTeX, no figure
Physical Optimization of Quantum Error Correction Circuits
Quantum error correcting codes have been developed to protect a quantum
computer from decoherence due to a noisy environment. In this paper, we present
two methods for optimizing the physical implementation of such error correction
schemes. First, we discuss an optimal quantum circuit implementation of the
smallest error-correcting code (the three bit code). Quantum circuits are
physically implemented by serial pulses, i.e. by switching on and off external
parameters in the Hamiltonian one after another. In contrast to this, we
introduce a new parallel switching method that allows faster gate operation by
switching all external parameters simultaneously. These two methods are applied
to electron spins in coupled quantum dots subject to a Heisenberg coupling
H=J(t) S_1*S_2 which can generate the universal quantum gate
`square-root-of-swap'. Using parallel pulses, the encoding for three-bit
quantum error correction in a Heisenberg system can be accelerated by a factor
of about two. We point out that parallel switching has potential applications
for arbitrary quantum computer architectures.Comment: 13 pages, 6 figure
Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence
Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate.
Objectives: We applied artificial intelligence (AI) to analyze a single apical four-chamber (A4C) transthoracic echocardiogram videoclip to detect HFpEF.
Methods: A three-dimensional convolutional neural network was developed and trained on A4C videoclips to classify patients with HFpEF (diagnosis of HF, EF≥50%, and echocardiographic evidence of increased filling pressure; cases) versus without HFpEF (EF≥50%, no diagnosis of HF, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or non-diagnostic (high uncertainty). Performance was assessed in an independent multi-site dataset and compared to previously validated clinical scores.
Results: Training and validation included 2971 cases and 3785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (AUROC:0.97 [95%CI:0.96-0.97] and 0.95 [0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were non-diagnostic; sensitivity (87.8%; 84.5-90.9%) and specificity (81.9%; 78.2-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the HFA-PEFF and H2FPEF scores, the AI HFpEF model correctly reclassified 73.5 and 73.6%, respectively. During follow-up (median [IQR]:2.3 [0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (hazard ratio [95%CI]:1.9 [1.5-2.4]).
Conclusion: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with versus without HFpEF, more often than clinical scores, and identified patients with higher mortality
Which Kubo formula gives the exact conductance of a mesoscopic disordered system?
In both research and textbook literature one often finds two ``different''
Kubo formulas for the zero-temperature conductance of a non-interacting Fermi
system. They contain a trace of the product of velocity operators and
single-particle (retarded and advanced) Green operators: or . The study investigates the relationship between
these expressions, as well as the requirements of current conservation, through
exact evaluation of such quantum-mechanical traces for a nanoscale (containing
1000 atoms) mesoscopic disordered conductor. The traces are computed in the
semiclassical regime (where disorder is weak) and, more importantly, in the
nonperturbative transport regime (including the region around
localization-delocalization transition) where concept of mean free path ceases
to exist. Since quantum interference effects for such strong disorder are not
amenable to diagrammatic or nonlinear -model techniques, the evolution
of different Green function terms with disorder strength provides novel insight
into the development of an Anderson localized phase.Comment: 7 pages, 5 embedded EPS figures, final published version (note: PRB
article has different title due to editorial censorship
Renormalization Group and Fermi Liquid Theory
We give a Hamiltonian based interpretation of microscopic Fermi liquid theory
within a renormalization group framework. We identify the fixed point
Hamiltonian of Fermi liquid theory, with the leading order corrections, and
show that this Hamiltonian in mean field theory gives the Landau
phenomenological theory. A renormalized perturbation theory is developed for
calculations beyond the Fermi liquid regime. We also briefly discuss the
breakdown of Fermi liquid theory as it occurs in the Luttinger model, and the
infinite dimensional Hubbard model at the Mott transition.Comment: 37 pages, postscript, Imperial College preprint 1994. Latex file plus
separate figures available on reques
RHESSI Results -- Time For a Rethink?
Hard X-rays and gamma-rays are the most direct signatures of energetic
electrons and ions in the sun's atmosphere which is optically thin at these
energies and their radiation involves no coherent processes. Being collisional
they are complementary to gyro-radiation in probing atmospheric density as
opposed to magnetic field and the electrons are primarily 10--100 keV in
energy, complementing the (>100 keV) electrons likely responsible for microwave
bursts.
The pioneering results of the Ramaty High Energy Solar Spectroscopic Imager
(RHESSI) are raising the first new major questions concerning solar energetic
particles in many years. Some highlights of these results are discussed --
primarily around RHESSI topics on which the authors have had direct research
involvement -- particularly when they are raising the need for re-thinking of
entrenched ideas. Results and issues are broadly divided into discoveries in
the spatial, temporal and spectral domains, with the main emphasis on flare
hard X-rays/fast electrons but touching also on gamma-rays/ions, non-flare
emissions, and the relationship to radio bursts.Comment: Proceedings CESRA Workshop 2004: "The High Energy Solar Corona:
Waves, Eruptions, Particles", Lecture Notes in Physics, 2006 (accepted
Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections
The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC,
which may be an important channel for testing the bottom quark Yukawa coupling,
is subject to large supersymmetric quantum corrections. In this work the
one-loop SUSY-QCD corrections to this process are evaluated and are found to be
quite sizable in some parameter space. We also study the behavior of the
corrections in the limit of heavy SUSY masses and find the remnant effects of
SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the
heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and
large \tan\beta) that they might be observable in the future LHC experiment.
The exploration of such remnant effects is important for probing SUSY,
especially in case that the sparticles are too heavy (above TeV) to be directly
discovered at the LHC.Comment: Results for the Tevatron adde
Effects of Large CP-violating Soft Phases on Supersymmetric Electroweak Baryogenesis
We revisit the results of recent electroweak baryogenesis calculations and
include all allowed large CP-violating supersymmetric phases. If the phases are
large, the resulting baryon asymmetry can be considerably larger than the
observed value . Much of the asymmetry must
therefore be washed out, and we argue that the upper bound on the light Higgs
mass is larger than the value reported in previous work.Comment: 15 pages, 3 figure
- …