112 research outputs found

    Quantum Transport in Two-Channel Fractional Quantum Hall Edges

    Full text link
    We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of the edge channels propagate in the same direction. It is shown that the quasiparticle tunneling picture and the electron tunneling picture give different scaling behaviors of the conductances, which indicates the existence of a crossover between the two pictures. When the direction of two edge-channels are opposite, e.g. in the case of MacDonald's edge construction for the ν=2/3\nu=2/3 state, the phase diagram is divided into two domains giving different temperature dependence of the conductance.Comment: 21 pages (REVTeX and 1 Postscript figure

    Fermi edge singularities in X-ray spectra of strongly correlated fermions

    Get PDF
    We discuss the problem of the X-ray absorption in a system of interacting fermions and, in particular, those features in the X-ray spectra that can be used to discriminate between conventional Fermi-liquids and novel "strange metals". Focusing on the case of purely forward scattering off the core-hole potential, we account for the relevant interactions in the conduction band by means of the bosonization technique. We find that the X-ray Fermi edge singularities can still be present, although modified, even if the density of states vanishes at the Fermi energy, and that, in general, the relationship between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin

    Exact Fermi-edge singularity exponent in a Luttinger liquid

    Full text link
    We report the exact calculation of the Fermi-edge singularity exponent for correlated electrons in one dimension (Luttinger liquid). Focusing on the special interaction parameter g=1/2, the asymptotic long-time behavior can be obtained using the Wiener-Hopf method. The result confirms the previous assumption of an open boundary fixed point. In addition, a dynamic k-channel Kondo impurity is studied via Abelian bosonization for k=2 and k=4. It is shown that the corresponding orthogonality exponents are related to the orthogonality exponent in a Luttinger liquid.Comment: 8 Pages RevTeX, no figure

    Physical Optimization of Quantum Error Correction Circuits

    Full text link
    Quantum error correcting codes have been developed to protect a quantum computer from decoherence due to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest error-correcting code (the three bit code). Quantum circuits are physically implemented by serial pulses, i.e. by switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce a new parallel switching method that allows faster gate operation by switching all external parameters simultaneously. These two methods are applied to electron spins in coupled quantum dots subject to a Heisenberg coupling H=J(t) S_1*S_2 which can generate the universal quantum gate `square-root-of-swap'. Using parallel pulses, the encoding for three-bit quantum error correction in a Heisenberg system can be accelerated by a factor of about two. We point out that parallel switching has potential applications for arbitrary quantum computer architectures.Comment: 13 pages, 6 figure

    Automated echocardiographic detection of heart failure with preserved ejection fraction using artificial intelligence

    Get PDF
    Background: Detection of heart failure with preserved ejection fraction (HFpEF) involves integration of multiple imaging and clinical features which are often discordant or indeterminate. Objectives: We applied artificial intelligence (AI) to analyze a single apical four-chamber (A4C) transthoracic echocardiogram videoclip to detect HFpEF. Methods: A three-dimensional convolutional neural network was developed and trained on A4C videoclips to classify patients with HFpEF (diagnosis of HF, EF≥50%, and echocardiographic evidence of increased filling pressure; cases) versus without HFpEF (EF≥50%, no diagnosis of HF, normal filling pressure; controls). Model outputs were classified as HFpEF, no HFpEF, or non-diagnostic (high uncertainty). Performance was assessed in an independent multi-site dataset and compared to previously validated clinical scores. Results: Training and validation included 2971 cases and 3785 controls (validation holdout, 16.8% patients), and demonstrated excellent discrimination (AUROC:0.97 [95%CI:0.96-0.97] and 0.95 [0.93-0.96] in training and validation, respectively). In independent testing (646 cases, 638 controls), 94 (7.3%) were non-diagnostic; sensitivity (87.8%; 84.5-90.9%) and specificity (81.9%; 78.2-85.6%) were maintained in clinically relevant subgroups, with high repeatability and reproducibility. Of 701 and 776 indeterminate outputs from the HFA-PEFF and H2FPEF scores, the AI HFpEF model correctly reclassified 73.5 and 73.6%, respectively. During follow-up (median [IQR]:2.3 [0.5-5.6] years), 444 (34.6%) patients died; mortality was higher in patients classified as HFpEF by AI (hazard ratio [95%CI]:1.9 [1.5-2.4]). Conclusion: An AI HFpEF model based on a single, routinely acquired echocardiographic video demonstrated excellent discrimination of patients with versus without HFpEF, more often than clinical scores, and identified patients with higher mortality

    Which Kubo formula gives the exact conductance of a mesoscopic disordered system?

    Full text link
    In both research and textbook literature one often finds two ``different'' Kubo formulas for the zero-temperature conductance of a non-interacting Fermi system. They contain a trace of the product of velocity operators and single-particle (retarded and advanced) Green operators: Tr(v^xG^rv^xG^a)\text{Tr} (\hat{v}_x \hat{G}^r \hat{v}_x \hat{G}^a) or Tr(v^xImG^v^xImG^)\text{Tr} (\hat{v}_x \text{Im} \hat{G} \hat{v}_x \text{Im} \hat{G}). The study investigates the relationship between these expressions, as well as the requirements of current conservation, through exact evaluation of such quantum-mechanical traces for a nanoscale (containing 1000 atoms) mesoscopic disordered conductor. The traces are computed in the semiclassical regime (where disorder is weak) and, more importantly, in the nonperturbative transport regime (including the region around localization-delocalization transition) where concept of mean free path ceases to exist. Since quantum interference effects for such strong disorder are not amenable to diagrammatic or nonlinear σ\sigma-model techniques, the evolution of different Green function terms with disorder strength provides novel insight into the development of an Anderson localized phase.Comment: 7 pages, 5 embedded EPS figures, final published version (note: PRB article has different title due to editorial censorship

    Renormalization Group and Fermi Liquid Theory

    Full text link
    We give a Hamiltonian based interpretation of microscopic Fermi liquid theory within a renormalization group framework. We identify the fixed point Hamiltonian of Fermi liquid theory, with the leading order corrections, and show that this Hamiltonian in mean field theory gives the Landau phenomenological theory. A renormalized perturbation theory is developed for calculations beyond the Fermi liquid regime. We also briefly discuss the breakdown of Fermi liquid theory as it occurs in the Luttinger model, and the infinite dimensional Hubbard model at the Mott transition.Comment: 37 pages, postscript, Imperial College preprint 1994. Latex file plus separate figures available on reques

    RHESSI Results -- Time For a Rethink?

    Full text link
    Hard X-rays and gamma-rays are the most direct signatures of energetic electrons and ions in the sun's atmosphere which is optically thin at these energies and their radiation involves no coherent processes. Being collisional they are complementary to gyro-radiation in probing atmospheric density as opposed to magnetic field and the electrons are primarily 10--100 keV in energy, complementing the (>100 keV) electrons likely responsible for microwave bursts. The pioneering results of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) are raising the first new major questions concerning solar energetic particles in many years. Some highlights of these results are discussed -- primarily around RHESSI topics on which the authors have had direct research involvement -- particularly when they are raising the need for re-thinking of entrenched ideas. Results and issues are broadly divided into discoveries in the spatial, temporal and spectral domains, with the main emphasis on flare hard X-rays/fast electrons but touching also on gamma-rays/ions, non-flare emissions, and the relationship to radio bursts.Comment: Proceedings CESRA Workshop 2004: "The High Energy Solar Corona: Waves, Eruptions, Particles", Lecture Notes in Physics, 2006 (accepted

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    Effects of Large CP-violating Soft Phases on Supersymmetric Electroweak Baryogenesis

    Get PDF
    We revisit the results of recent electroweak baryogenesis calculations and include all allowed large CP-violating supersymmetric phases. If the phases are large, the resulting baryon asymmetry can be considerably larger than the observed value nB/s∼4×10−11n_B/s \sim 4 \times 10^{-11}. Much of the asymmetry must therefore be washed out, and we argue that the upper bound on the light Higgs mass is larger than the value reported in previous work.Comment: 15 pages, 3 figure
    • …
    corecore