27 research outputs found
The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis
Patients in whom acid-fast bacilli smear-positive pulmonary tuberculosis was newly diagnosed were randomized to receive 400 mg moxifloxacin, 300 mg isonaizid, or 600 mg rifampin daily for 5 days. Sixteen-hour overnight sputa collections were made for the 2 days before and for 5 days of monotherapy. Bactericidal activity was estimated by the time taken to kill 50% of viable bacilli (vt(50)) and the fall in sputum viable count during the first 2 days designated as the early bactericidal activity (EBA). The mean vt(50) of moxifloxacin was 0.88 days (95% confidence interval [Cl], 0.43-1.33 days) and the mean EBA was 0.53 (95% CI 0.28-0.79). For the isoniazid group, the mean vt(50) was 0.46 days (95% Cl, 0.31-0.61 days) and the mean EBA was 0.77 (95% Cl, 0.54-1.00). For rifampin, the mean vt(50) was 0.71 days (95% Cl, 0.48-0.95 days) and the mean EBA was 0.28 (95% Cl, 0.15-0.41). Using the EBA method, isoniazid was significantly more active than rifampin (p < 0.01) but not moxifloxacin. Using the vt(50) method, isoniazid was more active than both rifampin and moxifloxacin (p = 0.03). Moxifloxacin has an activity similar to rifampin in human subjects with pulmonary tuberculosis, suggesting that it should undergo further assessment as part of a short course regimen for the treatment of drug-susceptible tuberculosis
Multispacer Sequence Typing for Mycobacterium tuberculosis Genotyping
Background: Genotyping methods developed to survey the transmission dynamics of Mycobacterium tuberculosis currently rely on the interpretation of restriction and amplification profiles. Multispacer sequence typing (MST) genotyping is based on the sequencing of several intergenic regions selected after complete genome sequence analysis. It has been applied to various pathogens, but not to M. tuberculosis. Methods and Findings: In M. tuberculosis, the MST approach yielded eight variable intergenic spacers which included four previously described variable number tandem repeat loci, one single nucleotide polymorphism locus and three newly evaluated spacers. Spacer sequence stability was evaluated by serial subculture. The eight spacers were sequenced in a collection of 101 M. tuberculosis strains from five phylogeographical lineages, and yielded 29 genetic events including 13 tandem repeat number variations (44.82%), 11 single nucleotide mutations (37.93%) and 5 deletions (17.24%). These 29 genetic events yielded 32 spacer alleles or spacer-types (ST) with an index of discrimination of 0.95. The distribution of M. tuberculosis isolates into ST profiles correlated with their assignment into phylogeographical lineages. Blind comparison of a further 93 M. tuberculosis strains by MST and restriction fragment length polymorphism-IS6110 fingerprinting and mycobacterial interspersed repetitive units typing, yielded an index of discrimination of 0.961 and 0.992, respectively. MST yielded 41 different profiles delineating 16 related groups and proved to be more discriminatory than IS6110-based typing for isolates containing M<8 IS6110 copies (P<0.0003). MST was successfully applied to 7/10 clinical specimens exhibiting a Cts <= 42 cycles in internal transcribed spacer-real time PCR. Conclusions: These results support MST as an alternative, sequencing-based method for genotyping low IS6110 copy-number M. tuberculosis strains. The M. tuberculosis MST database is freely available (http://ifr48.timone.univ-mrs.fr/MST_MTuberculosis/mst)
Amplification and sequencing of entire tick mitochondrial genomes for a phylogenomic analysis
The mitochondrial genome (mitogenome) has proven to be important for the taxonomy, systematics,
and population genetics of ticks. However, current methods to generate mitogenomes can be costprohibitive
at scale. To address this issue, we developed a cost-effective approach to amplify and
sequence the whole mitogenome of individual tick specimens. Using two different primer sites, this
approach generated two full-length mitogenome amplicons that were sequenced using the Oxford
Nanopore Technologies’ Mk1B sequencer. We used this approach to generate 85 individual tick
mitogenomes from samples comprised of the three tick families, 11 genera, and 57 species. Twentysix
of these species did not have a complete mitogenome available on GenBank prior to this work.
We benchmarked the accuracy of this approach using a subset of samples that had been previously
sequenced by low-coverage Illumina genome skimming. We found our assemblies were comparable
or exceeded the Illumina method, achieving a median sequence concordance of 99.98%. We further
analyzed our mitogenome dataset in a mitophylogenomic analysis in the context of all three tick
families. We were able to sequence 72 samples in one run and achieved a cost/sample of ~ $10
USD. This cost-effective strategy is applicable for sample identification, taxonomy, systematics,
and population genetics for not only ticks but likely other metazoans; thus, making mitogenome
sequencing equitable for the wider scientific community.NIH Grants and the Norman E. Borlaug International Agricultural Science and Technology Fellow.http://www.nature.com/scientificreportsam2023Veterinary Tropical Disease
Early bactericidal activity of a moxifloxacin and isoniazid combination in smear-positive pulmonary tuberculosis.
BACKGROUND: In vitro and animal studies have shown that moxifloxacin-containing combinations may improve the bactericidal efficacy of antituberculosis regimens. PATIENTS AND METHODS: We measured the decline in the sputum viable count of 13 patients who were given a combination of moxifloxacin 400 mg daily and isoniazid 300 mg daily. RESULTS: The time required to reduce the viable count by 50% (vt50) was 0.38 days (95% CI -0.03-0.78 days, SEM 0.13) and the mean early bactericidal activity (EBA) was 0.60 log10 cfu/day (95% CI 0.23-0.97, SEM 0.14). This compares with the vt50 calculated for isoniazid and moxifloxacin alone in the same population of 0.48 and 0.88 days, respectively. The EBA values for isoniazid and moxifloxacin alone were 0.77 and 0.53 log10 cfu/day, respectively. CONCLUSIONS: The combination of moxifloxacin and isoniazid is not antagonistic, but the combination does not significantly enhance bactericidal activity above that of isoniazid alone
Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species
Background: The tick population of Africa includes several important genera belonging to the family Ixodidae. Many of these ticks are vectors of protozoan and rickettsial pathogens including Theileria parva that causes East Coast fever, a debilitating cattle disease endemic to eastern, central and southern Africa. Effective surveillance of tick-borne pathogens depends on accurate identification and mapping of their tick vectors. A simple and reproducible technique for rapid and reliable differentiation of large numbers of closely related field-collected ticks, which are often difficult and tedious to discriminate purely by morphology, will be an essential component of this strategy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is increasingly becoming a useful tool in arthropod identification and has the potential to overcome the limitations of classical morphology-based species identification. In this study, we applied MALDI-TOF MS to a collection of laboratory and field ticks found in Eastern Africa. The objective was to determine the utility of this proteomic tool for reliable species identification of closely related afrotropical ticks.
Methods: A total of 398 ixodid ticks from laboratory maintained colonies, extracted from the hides of animals or systematically collected from vegetation in Kenya, Sudan and Zimbabwe were analyzed in the present investigation. The cytochrome c oxidase I (COI) genes from 33 specimens were sequenced to confirm the tentatively assigned specimen taxa identity on the basis of morphological analyses. Subsequently, the legs of ticks were homogenized and analyzed by MALDI-TOF MS. A collection of reference mass spectra, based on the mass profiles of four individual ticks per species, was developed and deposited in the spectral database SARAMIS™. The ability of these superspectra (SSp.) to identify and reliably validate a set of ticks was demonstrated using the remaining individual 333 ticks.
Results: Ultimately, ten different tick species within the genera Amblyomma, Hyalomma, Rhipicephalus and Rhipicephalus (Boophilus) based on molecular COI typing and morphology were included into the study analysis. The robustness of the 12 distinct SSp. developed here proved to be very high, with 319 out of 333 ticks used for validation identified correctly at species level. Moreover, these novel SSp. allowed for diagnostic specificity of 99.7 %. The failure of species identification for 14 ticks was directly linked to low quality mass spectra, most likely due to poor specimen quality that was received in the laboratory before sample preparation.
Conclusions: Our results are consistent with earlier studies demonstrating the potential of MALDI-TOF MS as a reliable tool for differentiating ticks originating from the field, especially females that are difficult to identify after blood feeding. This work provides further evidence of the utility of MALDI-TOF MS to identify morphologically and genetically highly similar tick species and indicates the potential of this tool for large-scale monitoring of tick populations, species distributions and host preferences
The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis.
Patients in whom acid-fast bacilli smear-positive pulmonary tuberculosis was newly diagnosed were randomized to receive 400 mg moxifloxacin, 300 mg isonaizid, or 600 mg rifampin daily for 5 days. Sixteen-hour overnight sputa collections were made for the 2 days before and for 5 days of monotherapy. Bactericidal activity was estimated by the time taken to kill 50% of viable bacilli (vt50) and the fall in sputum viable count during the first 2 days designated as the early bactericidal activity (EBA). The mean vt50 of moxifloxacin was 0.88 days (95% confidence interval [CI], 0.43-1.33 days) and the mean EBA was 0.53 (95% CI 0.28-0.79). For the isoniazid group, the mean vt50 was 0.46 days (95% CI, 0.31-0.61 days) and the mean EBA was 0.77 (95% CI, 0.54-1.00). For rifampin, the mean vt50 was 0.71 days (95% CI, 0.48-0.95 days) and the mean EBA was 0.28 (95% CI, 0.15-0.41). Using the EBA method, isoniazid was significantly more active than rifampin (p < 0.01) but not moxifloxacin. Using the vt50 method, isoniazid was more active than both rifampin and moxifloxacin (p = 0.03). Moxifloxacin has an activity similar to rifampin in human subjects with pulmonary tuberculosis, suggesting that it should undergo further assessment as part of a short course regimen for the treatment of drug-susceptible tuberculosis
Molecular methods for Mycobacterium tuberculosis strain typing: a users guide
There are now a wide range of techniques available to type Mycobacterium tuberculosis, the problem is to chose the correct technique. For large scale epidemiological studies the portability and standardization of IS6110 restriction fragment length polymorphism (RFLP) means that this remains the gold standard technique. In the next few years the internationally standard mycobacterial interspersed repetitive unit (MIRU) may come to challenge this primacy. Low copy number stains remain a problem and these can by typed by either polymorphic Guanine cytosine-rich repetitive sequence (PGRS) or MIRU-variable numbers of tandem repeat (VNTR). To confirm whether strains are part of a true cluster PGRS remains the method of choice. For local outbreaks and investigations of laboratory cross contamination where speed is of greatest importance suspect strains should be initially investigated using a PCR-based method The superior reproducibility and discrimination of MIRU-VNTR means that these methods should be favoured. If matches are found, then further confirmation of identity can be achieved using IS6110 RFLP or PGRS if the strains prove to have a low IS6110 copy number
Molecular methods for Mycobacterium tuberculosis strain typing:A users guide
There are now a wide range of techniques available to type Mycobacterium tuberculosis, the problem is to chose the correct technique. For large scale epidemiological studies the portability and standardization of IS6110 restriction fragment length polymorphism (RFLP) means that this remains the gold standard technique. In the next few years the internationally standard mycobacterial interspersed repetitive unit (MIRU) may come to challenge this primacy. Low copy number stains remain a problem and these can by typed by either polymorphic Guanine cytosine-rich repetitive sequence (PGRS) or MIRU-variable numbers of tandem repeat (VNTR). To confirm whether strains are part of a true cluster PGRS remains the method of choice. For local outbreaks and investigations of laboratory cross contamination where speed is of greatest importance suspect strains should be initially investigated using a PCR-based method The superior reproducibility and discrimination of MIRU-VNTR means that these methods should be favoured. If matches are found, then further confirmation of identity can be achieved using IS6110 RFLP or PGRS if the strains prove to have a low IS6110 copy number.</p