223 research outputs found

    The half-metallic ferromagnet Co2Mn0.5Fe0.5Si

    Full text link
    Electronic structure calculation were used to predict a new material for spintronic applications. Co2Mn0.5Fe0.5Si is one example which is stable against on-site correlation and disorder effects due to the position of the Fermi energy in the middle of the minority band gap. Experimentally the sample were made exhibiting L21 structure and a high magnetic order.Comment: 5 pages, 2 Figures, J. Magn. Magn. Mater. accepte

    Slater-Pauling Rule and Curie-Temperature of Co2_2-based Heusler compounds

    Full text link
    A concept is presented serving to guide in the search for new materials with high spin polarization. It is shown that the magnetic moment of half-metallic ferromagnets can be calculated from the generalized Slater-Pauling rule. Further, it was found empirically that the Curie temperature of Co2_2 based Heusler compounds can be estimated from a seemingly linear dependence on the magnetic moment. As a successful application of these simple rules, it was found that Co2_2FeSi is, actually, the half-metallic ferromagnet exhibiting the highest magnetic moment and the highest Curie temperature measured for a Heusler compound

    Observation of the Fresnel and Arago laws using the Mach-Zehnder interferometer

    Get PDF
    An experimental study is conducted to determine the effect of polarization on the interference of light waves. By using the temporal coherence property of light in a Mach-Zehnder interferometer, we verified the four important Fresnel and Arago laws for linearly polarized and circularly polarized light. This experiment provides a simple method for undergraduates to study the phenomena of interference and polarization. (C) 2008 American Association of Physics Teachers

    Properties of the quaternary half-metal-type Heusler alloy Co2_2Mn1x_{1-x}Fex_xSi

    Full text link
    This work reports on the bulk properties of the quaternary Heusler alloy Co2_2Mn1x_{1-x}Fex_xSi with the Fe concentration x=x=. All samples, which were prepared by arc melting, exhibit L21L2_1 long range order over the complete range of Fe concentration. Structural and magnetic properties of Co2_2Mn1x_{1-x}Fex_xSi Heusler alloys were investigated by means of X-ray diffraction, high and low temperature magnetometry, M{\"o\ss}bauer spectroscopy, and differential scanning calorimetry. The electronic structure was explored by means of high energy photo emission spectroscopy at about 8 keV photon energy. This ensures true bulk sensitivity of the measurements. The magnetization of the Fe doped Heusler alloys is in agreement with the values of the magnetic moments expected for a Slater-Pauling like behavior of half-metallic ferromagnets. The experimental findings are discussed on the hand of self-consistent calculations of the electronic and magnetic structure. To achieve good agreement with experiment, the calculations indicate that on-site electron-electron correlation must be taken into account, even at low Fe concentration. The present investigation focuses on searching for the quaternary compound where the half-metallic behavior is stable against outside influences. Overall, the results suggest that the best candidate may be found at an iron concentration of about 50%.Comment: 26 pages, 9 figures Phys. Rev. B accepte

    First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb

    Get PDF
    We use first-principles density functional theory to calculate the phonon frequencies, electron localization lengths, Born effective charges, dielectric response, and conventional electronic structures of the IV-VI chalcogenide series. The goals of our work are twofold: first, to determine the detailed chemical composition of lone pairs and, second, to identify the factors that cause lone pairs to favor high- or low-symmetry environments. Our results show that the traditional picture of cation s-p mixing causing localization of the lone pair lobe is incomplete, and instead the p states on the anion also play an important role. In addition these compounds reveal a delicate balance between two competing instabilities-structural distortion and tendency to metallicity-leading, at the same time, to anomalously large Born effective charges as well as large dielectric constants. The magnitude of the LO-TO splitting, which depends on the relative strength of both instabilities, shows a trend consistent with the structural distortions in these compounds

    Ferrimagnetism and disorder in epitaxial Mn(2-x)Co(x)VAl thin films

    Full text link
    The quaternary full Heusler compound Mn(2-x)Co(x)VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0...2 were prepared by DC and RF magnetron co-sputtering on heated MgO (001) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn2VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpreted with the help of band structure calculations in the coherent potential approximation. Mn2VAl is very sensitive to disorder involving Mn, because nearest-neighbor Mn atoms couple anti-ferromagnetically. Co2VAl has B2 order and has reduced magnetization. In the cases with x >= 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.Comment: 10 pages, 4 figure

    Correlation in the transition metal based Heusler compounds Co2_2MnSi and Co2_2FeSi

    Full text link
    Half-metallic ferromagnets like the full Heusler compounds with formula X2_2YZ are supposed to show an integer value of the spin magnetic moment. Calculations reveal in certain cases of X = Co based compounds non-integer values, in contrast to experiments. In order to explain deviations of the magnetic moment calculated for such compounds, the dependency of the electronic structure on the lattice parameter was studied theoretically. In local density approximation (LDA), the minimum total energy of Co2_2FeSi is found for the experimental lattice parameter, but the calculated magnetic moment is about 12% too low. Half-metallic ferromagnetism and a magnetic moment equal to the experimental value of 6μB6\mu_B are found, however, only after increasing the lattice parameter by more than 6%. To overcome this discrepancy, the LDA+U+U scheme was used to respect on-site electron correlation in the calculations. Those calculations revealed for Co2_2FeSi that an effective Coulomb-exchange interaction Ueff=UJU_{eff}=U-J in the range of about 2eV to 5eV leads to half-metallic ferromagnetism and the measured, integer magnetic moment at the measured lattice parameter. Finally, it is shown in the case of Co2_2MnSi that correlation may also serve to destroy the half-metallic behavior if it becomes too strong (for Co2_2MnSi above 2eV and for Co2_2FeSi above 5eV). These findings indicate that on-site correlation may play an important role in the description of Heusler compounds with localized moments.Comment: submitted to Phys. Rev.

    Effect of Bleaching on Color Change and Surface Topography of Composite Restorations

    Get PDF
    This study was conducted to determine the effect of 15% carbamide peroxide bleaching agent on color change and surface topography of different composite veneering materials (Filtek Z350 (3M ESPE), Esthet X (Dentsply India), and Admira (Voco, Germany). Methods. 30 samples were fabricated for evaluation of color change using CIELAB color system and Gonioreflectometer (GK 311/M, ZEISS). 45 disc-shaped specimens were made for evaluation of surface topography after bleaching (Nupro White Gold; Dentsply) using SEM. Statistical analysis. One way ANOVA and Multiple comparison tests were used to analyze the data. Statistical significance was declared if the P value was .05 or less. Results and conclusion. All the specimens showed significant discoloration (ΔE > 3.3) after their immersion in solutions representing food and beverages. The total color change after bleaching as compared to baseline color was significant in Filtek Z350 (P = .000) and Esthet X (P = .002), while it was insignificant for Admira (P = .18). Esthet X showed maximum surface roughness followed by Admira and Filtek Z350. Bleaching was effective in reducing the discoloration to a clinically acceptable value in all the three groups (ΔE < 3.3)

    Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds

    Full text link
    The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li+^+[AlSi]^-) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti4+^{4+}[CoSb]4^{4-}). The basis for this is that [AlSi]^- (with the same electron count as Si2_2) and [CoSb]4^{4-} (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be described as semiconductors with stuffing magnetic ions which have a local moment: For example, 22 electron MnNiSb can be written Mn3+^{3+}[NiSb]3^{3-}. The tendency in the 18 electron compound for a semiconducting gap -- believed to arise from strong covalency -- is carried over in MnNiSb to a tendency for a gap in one spin direction. Here we similarly propose the systematic examination of 18-electron hexagonal compounds for semiconducting gaps; these would be the "stuffed wurtzite" analogues of the "stuffed zinc blende" half-Heusler compounds. These semiconductors could then serve as the basis for possibly new families of half-metallic compounds, attained through appropriate replacement of non-magnetic ions by magnetic ones. These semiconductors and semimetals with tunable charge carrier concentrations could also be interesting in the context of magnetoresistive and thermoelectric materials.Comment: 11 pages, 6 figures, of which 4 are colou

    Brillouin light scattering study of Co2_{2}Cr0.6_{0.6}Fe0.4_{0.4}Al and Co2_{2}FeAl Heusler compounds

    Full text link
    The thermal magnonic spectra of Co2_{2}Cr0.6_{0.6}Fe0.4_{0.4}Al (CCFA) and Co2_2FeAl were investigated using Brillouin light scattering spectroscopy (BLS). For CCFA, the exchange constant A (exchange stiffness D) is found to be 0.48 μ\muerg/cm (203 meV A2^2), while for Co2_2FeAl the corresponding values of 1.55 μ\muerg/cm (370 meV A2^2) were found. The observed asymmetry in the BLS spectra between the Stokes and anti-Stokes frequencies was assigned to an interplay between the asymmetrical profiles of hybridized Damon-Esbach and perpendicular standing spin-wave modes, combined with the optical sensitivity of the BLS signal to the upper side of the CCFA or Co2_2FeAl film
    corecore