331 research outputs found

    Climate Change Science and Policy: Lessons from India

    Get PDF
    For more than a decade climate change has been the focus of much research and analysis. Despite the global implications of the problem the majority of research and analysis has involved researchers from industrialized countries. This paper analyzes how climate change research and analysis is performed in India, a major lesser-industrialized country. We explore the factors that play a role in shaping the capability of India to carry out, and respond to, climate change analyses. We also sketch out the links between national research and assessment capability and national policy making and how these links may have evolved and been mobilized in response to the international climate change debate. We also examine the Indian participation in, and perceptions of, the IPCC process. This allows us to reflect on the potential pitfalls for international assessment processes, and on the role that India can play in the global debate on climate change

    Reconciling uncertainties in integrated science and policy models: Applications to global climate change

    Full text link
    In this thesis tools of data reconciliation are used to integrate available information into scientific and policy models of greenhouse gases. The role of uncertainties in scientific and policy models of global climate change is examined, and implications for global change policy are drawn. Methane is the second most important greenhouse gas. Global sources and sinks of methane have significant uncertainties. A chance constrained methodology was developed and used to perform inversions on the global methane cycle. Budgets of methane that are consistent with source fluxes, isotopic and ice core measurements were determined. While it is not possible to come up with a single budget for CH{sub 4}, performing the calculation with a number of sets of assumed priors suggests a convergence in the allowed range for sources. In some cases -- wetlands (70-130 Tg/yr), rice paddies (60-125 Tg/yr) a significant reduction in the uncertainty of the source estimate is achieved. Our results compare favorably with the most recent measurements of flux estimates. For comparison, a similar analysis using bayes monte carlo simulation was performed. The question of the missing sink for carbon remains unresolved. Two analyses that attempt to quantify the missing sink were performed. First, a steady state analysis of the carbon cycle was used to determine the pre-industrial inter-hemispheric carbon concentration gradient. Second, a full blown dynamic inversion of the carbon cycle was performed. An advection diffusion ocean model with surface chemistry, coupled to box models of the atmosphere and the biosphere was inverted to fit available measurements of {sup 12}C and {sup 14}C carbon isotopes using Differential-Algebraic Optimization. The model effectively suggests that the {open_quotes}missing{close_quotes} sink for carbon is hiding in the biosphere. Scenario dependent trace gas indices were calculated for CH{sub 4}, N{sub 2}O, HCFC-22

    An extension to the Navier-Stokes equations to incorporate gas molecular collisions with boundaries

    Get PDF
    We investigate a model for micro-gas-flows consisting of the Navier-Stokes equations extended to include a description of molecular collisions with solid boundaries, together with first and second order velocity slip boundary conditions. By considering molecular collisions affected by boundaries in gas flows we capture some of the near-wall affects that the conventional Navier-Stokes equations with a linear stress/strain-rate relationship are unable to describe. Our model is expressed through a geometry-dependent mean-free-path yielding a new viscosity expression, which makes the stress/strain-rate constitutive relationship non-linear. Test cases consisting of Couette and Poiseuille flows are solved using these extended Navier-Stokes equations, and we compare the resulting velocity profiles with conventional Navier-Stokes solutions and those from the BGK kinetic model. The Poiseuille mass flow-rate results are compared with results from the BGK-model and experimental data, for various degrees of rarefaction. We assess the range of applicability of our model and show that it can extend the applicability of conventional fluid dynamic techniques into the early continuum-transition regime. We also discuss the limitations of our model due to its various physical assumptions, and we outline ideas for further development

    Heat transfer correlation for flow boiling in small to micro tubes

    Get PDF
    This article is available open access under a Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Copyright © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.There is a large discrepancy in the open literature about the comparative performance of the existing macro and microscale heat transfer models and correlations when applied to small/micro flow boiling systems. This paper presents a detailed comparison of the flow boiling heat transfer coefficient for R134a in stainless steel micro tubes with 21 macro and microscale correlations and models. The experimental database that was used in the comparison includes the data for 1.1 and 0.52 mm diameter tubes, mass flux range of 100–500 kg/m2 s and system pressure range 6–10 bar obtained in the course of this study. The effect of the evaporator heated length on the comparative performance of the correlations and models was investigated using three different lengths of the 1.1 mm diameter tube (L = 150, 300 and 450 mm). This comparative study demonstrated that none of the assessed models and correlations could predict the experimental data with a reasonable accuracy. Also, the predictability of most correlations becomes worse as the heated length increases. This may contribute in explaining the discrepancy in the comparative performance of the correlations from one study to another. A new correlation is proposed in the present study based on the superposition model of Chen. The database used in developing the correlation consists of 5152 data points including the current experimental data and data obtained previously with the same test rig, fluid and methodology for tubes of diameter 4.26, 2.88, 2.01 mm. The new correlation predicted 92% of the data within the ±30% error bands with a MAE value of 14.3%

    Analysis of the thermomechanical inconsistency of some extended hydrodynamic models at high Knudsen number

    Get PDF
    There are some hydrodynamic equations that, while their parent kinetic equation satisfies fundamental mechanical properties, appear themselves to violate mechanical or thermodynamic properties. This article aims to shed some light on the source of this problem. Starting with diffusive volume hydrodynamic models, the microscopic temporal and spatial scales are first separated at the kinetic level from the macroscopic scales at the hydrodynamic level. Then we consider Klimontovich’s spatial stochastic version of the Boltzmann kinetic equation, and show that, for small local Knudsen numbers, the stochastic term vanishes and the kinetic equation becomes the Boltzmann equation. The collision integral dominates in the small local Knudsen number regime, which is associated with the exact traditional continuum limit. We find a sub-domain of the continuum range which the conventional Knudsen number classification does not account for appropriately. In this sub-domain, it is possible to obtain a fully mechanically-consistent volume (or mass) diffusion model that satisfies the second law of thermodynamics on the grounds of extended non-local-equilibrium thermodynamics

    Optimal design of multi-channel microreactor for uniform residence time distribution

    Get PDF
    Multi-channel microreactors can be used for various applications that require chemical or electrochemical reactions in either liquid, gaseous or multi phase. For an optimal control of the chemical reactions, one key parameter for the design of such microreactors is the residence time distribution of the fluid, which should be as uniform as possible in the series of microchannels that make up the core of the reactor. Based on simplifying assumptions, an analytical model is proposed for optimizing the design of the collecting and distributing channels which supply the series of rectangular microchannels of the reactor, in the case of liquid flows. The accuracy of this analytical approach is discussed after comparison with CFD simulations and hybrid analytical-CFD calculations that allow an improved refinement of the meshing in the most complex zones of the flow. The analytical model is then extended to the case of microchannels with other cross-sections (trapezoidal or circular segment) and to gaseous flows, in the continuum and slip flow regimes. In the latter case, the model is based on second-order slip flow boundary conditions, and takes into account the compressibility as well as the rarefaction of the gas flow

    Why a clearer ‘green industrial policy’ matters for India: Reconciling growth, climate change and inequality

    Get PDF
    © 2016, © The Author(s) 2016. To ensure a healthy growth of the economy particularly in the manufacturing sector, the Indian Government is more than ever focussed on promoting the use of sustainable and affordable energy resources. Recent initiatives such as the Solar Cities Development Programme are a good example. However, in order for these initiatives to gain legitimacy as part of a new ‘green industrial policy’, the Indian Government needs to do more, especially by bringing on board strategies for combating poverty within the gamut of this emerging ‘green industrial policy’ as well as to re-think India’s position on global conventions on climate change

    An experimental and numerical investigation of the use of liquid flow in serpentine microchannels for microelectronics cooling

    Get PDF
    This paper presents a combined experimental and numerical investigation of single-phase water flow and heat transfer in serpentine rectangular microchannels embedded in a heated copper block. The performance of four different microchannel heat sink (MCHS) configurations are investigated experimentally, the first having an array of straight rectangular microchannels (SRMs), while the other have single (SPSMs), double (DPSMs) and triple path multi-serpentine rectangular microchannels (TPSMs). Three-dimensional conjugate heat transfer models are developed for both laminar and turbulent single-phase water flows in each of these MCHSs and the governing flow and energy equations solved numerically using finite elements. The numerical predictions of pressure drop (∆P) and average Nusselt number (〖Nu〗_avg) are in good agreement with experimental data, and indicated that the single path serpentine microchannel (SPSM) leads to a 35% enhancement of the 〖Nu〗_avg at a volumetric flow rate of 0.5 l/min and a 19% reduction in total thermal resistance (R_th) compared to the conventional SRM heat sink. However, this enhancement is at the expense of a large (up to ten-fold) increase in ∆P compared to the SRM heat sink, so that a suitable compromise must be struck between heat transfer and pressure drop in practical MCHS designs
    corecore