10 research outputs found
Synergism of interferon-beta with antiviral drugs against SARS-CoV-2 variants
Letter to the editor
Omicronâinduced interferon signaling prevents influenza A H1N1 and H5N1 virus infection
Recent findings in permanent cell lines suggested that SARSâCoVâ2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in airâliquid interface cultures of primary human bronchial epithelial cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active types I (α/ÎČ) and III (λ) interferons and protected cells from superâinfection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenzaâlike illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicronâinduced interferon signaling was mediated via doubleâstranded RNA recognition by MDA5, as MDA5 knockout prevented it. The JAK/STAT inhibitor baricitinib inhibited the Omicronâmediated antiviral response, suggesting it is caused by MDA5âmediated interferon production, which activates interferon receptors that then trigger JAK/STAT signaling. In conclusion, our study (1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, (2) shows that Omicron infection protects cells from influenza A virus superâinfection, and (3) indicates that BA.1 and BA.5 induce comparable antiviral states
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and airâliquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research
Repurposing of the antibiotic nitroxoline for the treatment of mpox
The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic sideâeffects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimatâresistant strain and increased the antiâmpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often coâtransmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity
Omicron-induced interferon signalling prevents influenza A virus infection
Recent findings in permanent cell lines suggested that SARS-CoV-2 Omicron BA.1 induces a stronger interferon response than Delta. Here, we show that BA.1 and BA.5 but not Delta induce an antiviral state in air-liquid interface (ALI) cultures of primary human bronchial epithelial (HBE) cells and primary human monocytes. Both Omicron subvariants caused the production of biologically active type I (α/ÎČ) and III (λ) interferons and protected cells from super-infection with influenza A viruses. Notably, abortive Omicron infection of monocytes was sufficient to protect monocytes from influenza A virus infection. Interestingly, while influenza-like illnesses surged during the Delta wave in England, their spread rapidly declined upon the emergence of Omicron. Mechanistically, Omicron-induced interferon signalling was mediated via double-stranded RNA recognition by MDA5, as MDA5 knock-out prevented it. The JAK/ STAT inhibitor baricitinib inhibited the Omicron-mediated antiviral response, suggesting it is caused by MDA5-mediated interferon production, which activates interferon receptors that then trigger JAK/ STAT signalling. In conclusion, our study 1) demonstrates that only Omicron but not Delta induces a substantial interferon response in physiologically relevant models, 2) shows that Omicron infection protects cells from influenza A virus super-infection, and 3) indicates that BA.1 and BA.5 induce comparable antiviral states
CD47 as a potential biomarker for the early diagnosis of severe COVID-19
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. Antiviral interventions are only effective prior to the onset of hyperinflammation. Hence, biomarkers are needed for the early identification and treatment of high-risk patients. Here, we show in a range of model systems and data from post mortem samples that SARS-CoV-2 infection results in increased levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells. Systematic literature searches also indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions which may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, CD47 is a candidate biomarker for severe COVID-19. Further research will have to show whether CD47 is a reliable diagnostic marker for the early identification of COVID-19 patients requiring antiviral therapy
A potential role of the CD47/SIRPalpha axis in COVID-19 pathogenesis
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and airâliquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research
Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants
Coronavirus disease 2019 (COVID-19) spawned a global health crisis in late 2019 and is caused by the novel coronavirus SARS-CoV-2. SARS-CoV-2 infection can lead to elevated markers of endothelial dysfunction associated with higher risk of mortality. It is unclear whether endothelial dysfunction is caused by direct infection of endothelial cells or is mainly secondary to inflammation. Here, we investigate whether different types of endothelial cells are susceptible to SARS-CoV-2. Human endothelial cells from different vascular beds including umbilical vein endothelial cells, coronary artery endothelial cells (HCAEC), cardiac and lung microvascular endothelial cells, or pulmonary arterial cells were inoculated in vitro with SARS-CoV-2. Viral spike protein was only detected in HCAECs after SARS-CoV-2 infection but not in the other endothelial cells tested. Consistently, only HCAEC expressed the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2), required for virus infection. Infection with the SARS-CoV-2 variants B.1.1.7, B.1.351, and P.2 resulted in significantly higher levels of viral spike protein. Despite this, no intracellular double-stranded viral RNA was detected and the supernatant did not contain infectious virus. Analysis of the cellular distribution of the spike protein revealed that it co-localized with endosomal calnexin. SARS-CoV-2 infection did induce the ER stress gene EDEM1, which is responsible for clearance of misfolded proteins from the ER. Whereas the wild type of SARS-CoV-2 did not induce cytotoxic or pro-inflammatory effects, the variant B.1.1.7 reduced the HCAEC cell number. Of the different tested endothelial cells, HCAECs showed highest viral uptake but did not promote virus replication. Effects on cell number were only observed after infection with the variant B.1.1.7, suggesting that endothelial protection may be particularly important in patients infected with this variant
Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform
Summary: Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. AÂ proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits