81 research outputs found
CA 15-3 is predictive of response and disease recurrence following treatment in locally advanced breast cancer
BACKGROUND: Primary chemotherapy (PC) is used for down-staging locally advanced breast cancer (LABC). CA 15-3 measures the protein product of the MUC1 gene and is the most widely used serum marker in breast cancer. METHODS: We retrospectively investigated the role of CA 15-3 in conjunction with other clinico-pathological variables as a predictor of response and time to disease recurrence following treatment in LABC. Pre and post primary chemotherapy serum concentrations of CA 15-3 together with other variables were reviewed and related to four outcomes following primary chemotherapy (clinical response, pathological response, time to recurrence and time to progression). Persistently elevated CA 15-3 after PC was considered as consecutively high levels above the cut off point during and after PC. RESULTS: 73 patients were included in this study. Patients received PC (AC or AC-T regimen) for locally advanced breast cancer. 54 patients underwent surgery. The median follow up was 790 days. Patients with high concentrations of CA 15-3 before PC treatment had a poor clinical (p = 0.013) and pathological (p = 0.044) response. Together with Her-2/neu expression (p = 0.009) and tumour lympho-vascular space invasion (LVI) (p = 0.001), a persistently elevated CA 15-3 post PC (p = 0.007) was an independent predictive factor of recurrence following treatment in LABC. CONCLUSION: Elevated CA 15-3 level is predictive of a poor response to chemotherapy. In addition, persistently elevated CA 15-3 levels post chemotherapy in conjunction with lympho-vascular invasion and HER2 status predict a reduced disease free survival following treatment in locally advanced breast cancer
p53 as a potential predictive factor of response to chemotherapy: feasibility of p53 assessment using a functional test in yeast from trucut biopsies in breast cancer patients
Assessment of the predictive value of p53 requires the testing of large numbers of samples from patients enrolled in prospective phase III clinical trials. The goal of this study was to determine whether p53 status can be determined by p53 yeast functional assay using the limiting amounts of material that can typically be obtained in prospective phase III trials (particularly when chemotherapy is given before surgery). All patients presenting with a clinically palpable tumour which could be considered large enough to perform a trucut biopsy (⩾2 cm breast tumour) were eligible for this study. Two trucut biopsies and one incisional biopsy were performed on the surgical specimens (mastectomy or tumourectomy). Samples were snap frozen and cryostat sections were taken for histology and p53 testing. Thirty patients were included. Three samples out of 90 failed to give any p53 PCR products, probably because these samples contained almost entirely fibrous tissue. Of the 87 samples that could be tested, the incisional and trucut biopsies results were fully concordant in every case. p53 could be defined in 97% of patients by double trucut biopsy. Eight out of 30 tumours tested were mutant for p53 (27%). p53 status can be reliably determined by yeast assay from single frozen sections of trucut biopsies. Histological examination before p53 testing is essential to exclude cases where the p53 result may reflect only the status of the normal cells in the biopsy
Exquisite Sensitivity of TP53 Mutant and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide Regimen
BACKGROUND: In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown. METHODS AND FINDINGS: In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m(2) epirubicin and 1,200 mg/m(2) cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status. CONCLUSIONS: This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin–cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features
The p53 pathway in breast cancer
p53 mutation remains the most common genetic change identified in human neoplasia. In breast cancer, p53 mutation is associated with more aggressive disease and worse overall survival. The frequency of mutation in p53 is, however, lower in breast cancer than in other solid tumours. Changes, both genetic and epigenetic, have been identified in regulators of p53 activity and in some downstream transcriptional targets of p53 in breast cancers that express wild-type p53. Molecular pathological analysis of the structure and expression of constituents of the p53 pathway is likely to have value in diagnosis, in prognostic assessment and, ultimately, in treatment of breast cancer
Frequently increased epidermal growth factor receptor (EGFR) copy numbers and decreased BRCA1 mRNA expression in Japanese triple-negative breast cancers
<p>Abstract</p> <p>Background</p> <p>Triple-negative breast cancer (estrogen receptor-, progesterone receptor-, and HER2-negative) (TNBC) is a high risk breast cancer that lacks specific therapy targeting these proteins.</p> <p>Methods</p> <p>We studied 969 consecutive Japanese patients diagnosed with invasive breast cancer from January 1981 to December 2003, and selected TNBCs based on the immunohistochemical data. Analyses of epidermal growth factor receptor (<it>EGFR</it>) gene mutations and amplification, and <it>BRCA</it>1 mRNA expression were performed on these samples using TaqMan PCR assays. The prognostic significance of TNBCs was also explored. Median follow-up was 8.3 years.</p> <p>Results</p> <p>A total of 110 (11.3%) patients had TNBCs in our series. Genotyping of the <it>EGFR </it>gene was performed to detect 14 known <it>EGFR </it>mutations, but none was identified. However, <it>EGFR </it>gene copy number was increased in 21% of TNBCs, while only 2% of ER- and PgR-positive, HER2-negative tumors showed slightly increased <it>EGFR </it>gene copy numbers. Thirty-one percent of TNBCs stained positive for EGFR protein by immunohistochemistry. <it>BRCA1 </it>mRNA expression was also decreased in TNBCs compared with controls. Triple negativity was significantly associated with grade 3 tumors, TP53 protein accumulation, and high Ki67 expression. TNBC patients had shorter disease-free survival than non-TNBC in node-negative breast cancers.</p> <p>Conclusion</p> <p>TNBCs have an aggressive clinical course, and <it>EGFR </it>and <it>BRCA1 </it>might be candidate therapeutic targets in this disease.</p
Evaluation of HER2 and p53 expression in predicting response to docetaxel-based first-line chemotherapy in advanced breast cancer
<p>Abstract</p> <p>Background</p> <p>The human epidermal growth factor receptor 2 (HER2) and p53 pathways may be involved in chemotherapy sensitivity and/or resistance. We explore the value of HER2 and p53 status to foretell docetaxel sensitivity in advanced breast cancer.</p> <p>Methods</p> <p>HER2 and p53 expression was analysed in 36 (median age 55 yrs; range 37-87) metastatic breast cancer patients receiving docetaxel-based first-line chemotherapy. HER2 was determined by immunohistochemistry (IHC) and fluorescence <it>in situ </it>hybridization (FISH), p53 was tested by IHC. We correlate the expression of study parameters with pathologic parameters, RECIST response and survival. The standard cut-off value of 2 was used to determine HER2 overexpression while p53 mean expression level was used to divide low/high expressors tumors.</p> <p>Results</p> <p>Median time to progression and overall survival were 9 (range 2 - 54) and 20 (range 3 - 101) months. Overall response rate was 41.6%. Nine cases showed HER2 overexpression. HER2 was more frequently overexpressed in less differentiated (<it>p </it>= 0.05) and higher stage (<it>p </it>= 0.003) disease. Mean FISH-HER2 values were significantly higher in responder than in non-responder pts (8.53 ± 10.21 vs 2.50 ± 4.12, <it>p </it>= 0.027). Moreover, HER2 overexpression correlates with treatment response at cross-tabulation analysis (<it>p </it>= 0.046). p53 expression was only associated with higher stage disease (<it>p </it>= 0.02) but lack of any significant association with HER status or docetaxel response. No significant relation with survival was observed for any parameter.</p> <p>Conclusion</p> <p>Our data seem to indicate that FISH-determined HER2 status but not p53 is associated with docetaxel sensitivity in metastatic breast cancer.</p
Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer
<p>Abstract</p> <p>Background</p> <p>Prognostic factors in locally advanced breast cancer treated with neoadjuvant chemotherapy differ from those of early breast cancer. The purpose of this study was to identify the clinical significance of potential predictive and prognostic factors in breast cancer patients treated by neoadjuvant chemotherapy.</p> <p>Methods</p> <p>A total of 145 stage II and III breast cancer patients received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. We examined the clinical and biological factors (ER, PR, p53, c-erbB2, bcl-2, and Ki-67) by immunohistochemistry. We analyzed clinical outcome and their correlation with clinicopathologic parameters.</p> <p>Results</p> <p>Among the clinicopathologic parameters investigated, none of the marker was correlated with response rate (RR) except triple negative phenotype. Patients with triple negative phenotype showed higher RR (83.0% in triple negative <it>vs</it>. 62.2% in non-triple negative, <it>p </it>= 0.012) and pathologic complete RR (17.0% in triple negative <it>vs</it>. 3.1% in non-triple negative, <it>p </it>= 0.005). However, relapse free survival (RFS) and overall survival (OS) were significantly shorter in triple negative breast cancer patients (<it>p </it>< 0.001, <it>p </it>= 0.021, respectively). Low histologic grade, positive hormone receptors, positive bcl-2 and low level of Ki-67 were associated with prolonged RFS. In addition, positive ER and positive bcl-2 were associated with prolonged OS. In our homogeneous patient population, initial clinical stage reflects RFS and OS more precisely than pathologic stage. In multivariate analysis, initial clinical stage was the only significant independent prognostic factor to impact on OS (hazard ratio 3.597, <it>p </it>= 0.044).</p> <p>Conclusion</p> <p>Several molecular markers provided useful predictive and prognostic information in stage II and III breast cancer patients treated with neoadjuvant docetaxel/doxorubicin chemotherapy. Triple negative phenotype was associated with shorter survival, even though it was associated with a higher response rate to neoadjuvant chemotherapy.</p
Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study
The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents
- …