61 research outputs found

    Mitochondrial complex III bypass complex I to induce ROS in GPR17 signaling activation in GBM

    Get PDF
    Guanine nucleotide binding protein (G protein) coupled receptor 17 (GPR17) plays crucial role in Glioblastoma multiforme (GBM) cell signaling and is primarily associated with reactive oxidative species (ROS) production and cell death. However, the underlying mechanisms by which GPR17 regulates ROS level and mitochondrial electron transport chain (ETC) complexes are still unknown. Here, we investigate the novel link between the GPR17 receptor and ETC complex I and III in regulating level of intracellular ROS (ROSi) in GBM using pharmacological inhibitors and gene expression profiling. Incubation of 1321N1 GBM cells with ETC I inhibitor and GPR17 agonist decreased the ROS level, while treatment with GPR17 antagonist increased the ROS level. Also, inhibition of ETC III and activation of GPR17 increased the ROS level whereas opposite function was observed with antagonist interaction. The similar functional role was also observed in multiple GBM cells, LN229 and SNB19, where ROS level increased in the presence of Complex III inhibitor. The level of ROS varies in Complex I inhibitor and GPR17 antagonist treatment conditions suggesting that ETC I function differs depending on the GBM cell line. RNAseq analysis revealed that ~ 500 genes were commonly expressed in both SNB19 and LN229, in which 25 genes are involved in ROS pathway. Furthermore, 33 dysregulated genes were observed to be involved in mitochondria function and 36 genes of complex I-V involved in ROS pathway. Further analysis revealed that induction of GPR17 leads to loss of function of NADH dehydrogenase genes involved in ETC I, while cytochrome b and Ubiquinol Cytochrome c Reductase family genes in ETC III. Overall, our findings suggest that mitochondrial ETC III bypass ETC I to increase ROSi in GPR17 signaling activation in GBM and could provide new opportunities for developing targeted therapy for GBM

    Anticancer activity of THMPP: Downregulation of PI3K/ S6K1 in breast cancer cell line.

    Get PDF
    Breast cancer is the most common cancer that majorly affects female. The present study is focused on exploring the potential anticancer activity of 2-((1, 2, 3, 4-Tetrahydroquinolin-1-yl) (4 methoxyphenyl) methyl) phenol (THMPP), against human breast cancer. The mechanism of action, activation of specific signaling pathways, structural activity relationship and drug-likeness properties of THMPP remains elusive. Cell proliferation and viability assay, caspase enzyme activity, DNA fragmentation and FITC/Annexin V, AO/EtBr staining, RT-PCR, QSAR and ADME analysis were executed to understand the mode of action of the drug. The effect of THMPP on multiple breast cancer cell lines (MCF-7 and SkBr3), and non-tumorigenic cell line (H9C2) was assessed by MTT assay. THMPP at I

    Identifying the miRNA Signature Association with Aging-Related Senescence in Glioblastoma.

    Get PDF
    Glioblastoma (GBM) is the most common malignant brain tumor and its malignant phenotypic characteristics are classified as grade IV tumors. Molecular interactions, such as protein-protein, protein-ncRNA, and protein-peptide interactions are crucial to transfer the signaling communications in cellular signaling pathways. Evidences suggest that signaling pathways of stem cells are also activated, which helps the propagation of GBM. Hence, it is important to identify a common signaling pathway that could be visible from multiple GBM gene expression data. microRNA signaling is considered important in GBM signaling, which needs further validation. We performed a high-throughput analysis using micro array expression profiles from 574 samples to explore the role of non-coding RNAs in the disease progression and unique signaling communication in GBM. A series of computational methods involving miRNA expression, gene ontology (GO) based gene enrichment, pathway mapping, and annotation from metabolic pathways databases, and network analysis were used for the analysis. Our study revealed the physiological roles of many known and novel miRNAs in cancer signaling, especially concerning signaling in cancer progression and proliferation. Overall, the results revealed a strong connection with stress induced senescence, significant miRNA targets for cell cycle arrest, and many common signaling pathways to GBM in the network

    Marine halophyte derived polyphenols inhibit glioma cell growth through mitogen-activated protein kinase signaling pathway

    Get PDF
    Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase − 3 and − 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.publishedVersionPeer reviewe

    Engineering calcium signaling of astrocytes for neural-molecular computing logic gates.

    Get PDF
    This paper proposes the use of astrocytes to realize Boolean logic gates, through manipulation of the threshold of [Formula: see text] ion flows between the cells based on the input signals. Through wet-lab experiments that engineer the astrocytes cells with pcDNA3.1-hGPR17 genes as well as chemical compounds, we show that both AND and OR gates can be implemented by controlling [Formula: see text] signals that flow through the population. A reinforced learning platform is also presented in the paper to optimize the [Formula: see text] activated level and time slot of input signals [Formula: see text] into the gate. This design platform caters for any size and connectivity of the cell population, by taking into consideration the delay and noise produced from the signalling between the cells. To validate the effectiveness of the reinforced learning platform, a [Formula: see text] signalling simulator was used to simulate the signalling between the astrocyte cells. The results from the simulation show that an optimum value for both the [Formula: see text] activated level and time slot of input signals [Formula: see text] is required to achieve up to 90% accuracy for both the AND and OR gates. Our method can be used as the basis for future Neural-Molecular Computing chips, constructed from engineered astrocyte cells, which can form the basis for a new generation of brain implants

    In vivo kinetics of transcription initiation of the lar promoter in Escherichia coli. Evidence for a sequential mechanism with two rate-limiting steps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Escherichia coli </it>the mean and cell-to-cell diversity in RNA numbers of different genes vary widely. This is likely due to different kinetics of transcription initiation, a complex process with multiple rate-limiting steps that affect RNA production.</p> <p>Results</p> <p>We measured the <it>in vivo </it>kinetics of production of individual RNA molecules under the control of the lar promoter in <it>E. coli</it>. From the analysis of the distributions of intervals between transcription events in the regimes of weak and medium induction, we find that the process of transcription initiation of this promoter involves a sequential mechanism with two main rate-limiting steps, each lasting hundreds of seconds. Both steps become faster with increasing induction by IPTG and Arabinose.</p> <p>Conclusions</p> <p>The two rate-limiting steps in initiation are found to be important regulators of the dynamics of RNA production under the control of the lar promoter in the regimes of weak and medium induction. Variability in the intervals between consecutive RNA productions is much lower than if there was only one rate-limiting step with a duration following an exponential distribution. The methodology proposed here to analyze the <it>in vivo </it>dynamics of transcription may be applicable at a genome-wide scale and provide valuable insight into the dynamics of prokaryotic genetic networks.</p

    Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent.

    Get PDF
    Purinergic receptor is a potential drug target for neuropathic pain, Alzheimer disease, and prostate cancer. Focusing on the structure-based ligand discovery, docking analysis on the crystal structure of P2

    Alkylaminophenol Induces G1/S Phase Cell Cycle Arrest in Glioblastoma Cells Through p53 and Cyclin-Dependent Kinase Signaling Pathway

    Get PDF
    Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. We show here that small molecule 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), a potential anticancer agent, increases the human glioblastoma cell death. Its mechanism of action and the interaction of selective signaling pathways remain elusive. Three structurally related phenolic compounds were tested in multiple glioma cell lines in which the potential activity of the compound, THTMP, was further validated and characterized. Upon prolonged exposer to THTMP, all glioma cell lines undergo p53 and cyclin-dependent kinase mediated cell death with the IC50 concentration of 26.5 and 75.4 μM in LN229 and Snb19, respectively. We found that THTMP strongly inhibited cell growth in a dose and in time dependent manner. THTMP treatment led to G1/S cell cycle arrest and apoptosis induction of glioma cell lines. Furthermore, we identified 3,714 genes with significant changes at the transcriptional level in response to THTMP. Further, a transcriptional analysis (RNA-seq) revealed that THTMP targeted the p53 signaling pathway specific genes causing DNA damage and cell cycle arrest at G1/S phase explained by the decrease of cyclin-dependent kinase 1, cyclin A2, cyclin E1 and E2 in glioma cells. Consistently, THTMP induced the apoptosis by regulating the expression of Bcl-2 family genes and reactive oxygen species while it also changed the expression of several anti-apoptotic genes. These observations suggest that THTMP exerts proliferation activity inhibition and pro-apoptosis effects in glioma through affecting cell cycle arrest and intrinsic apoptosis signaling. Importantly, THTMP has more potential at inhibiting GBM cell proliferation compared to TMZ, the current chemotherapy treatment administered to GBM patients; thus, we propose that THTMP may be an alternative therapeutic option for glioblastoma

    Functional characterization of HIC, a P2Y1 agonist, as a p53 stabilizer for prostate cancer cell death induction

    Get PDF
    Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods and results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells' migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.acceptedVersionPeer reviewe

    Computational Models for Trapping Ebola Virus Using Engineered Bacteria

    Get PDF
    The outbreak of Ebola virus in recent years has resulted in numerous research initiatives to seek new solutions to contain the virus. A number of approaches that have been investigated include new vaccines to boost the immune system. An alternative post-exposure treatment is presented in this paper. The proposed approach for clearing Ebola virus can be developed through a microfluidic attenuator, which contains the engineered bacteria that traps Ebola flowing through the blood onto its membrane. The paper presents the analysis of the chemical binding force between the virus and a genetically engineered bacterium considering the opposing forces acting on the attachment point, including hydrodynamic tension and drag force. To test the efficacy of the technique, simulations of bacterial motility within a confined area to trap the virus were performed. More than 60% of the displaced virus could be collected within 15 minutes. While the proposed approach currently focuses on in vitro environments for trapping the virus, the system can be further developed into the future for treatment whereby blood can be cycled out of the body into a microfluidic device that contains the engineered bacteria to trap viruses
    • …
    corecore