7 research outputs found

    Valid and Reproducible Quantitative Assessment of Cardiac Volumes by Echocardiography in Patients with Valvular Heart Diseases—Possible or Wishful Thinking?

    No full text
    The analysis of left ventricular function is predominantly based on left ventricular volume assessment. Especially in valvular heart diseases, the quantitative assessment of total and effective stroke volumes as well as regurgitant volumes is necessary for a quantitative approach to determine regurgitant volumes and regurgitant fraction. In the literature, there is an ongoing discussion about differences between cardiac volumes estimated by echocardiography and cardiac magnetic resonance tomography. This viewpoint focuses on the feasibility to assess comparable cardiac volumes with both modalities. The former underestimation of cardiac volumes determined by 2D and 3D echocardiography is presumably explained by methodological and technical limitations. Thus, this viewpoint aims to stimulate an urgent and critical rethinking of the echocardiographic assessment of patients with valvular heart diseases, especially valvular regurgitations, because the actual integrative approach might be too error prone to be continued in this form. It should be replaced or supplemented by a definitive quantitative approach. Valid quantitative assessment by echocardiography is feasible once echocardiography and data analysis are performed with methodological and technical considerations in mind. Unfortunately, implementation of this approach cannot generally be considered for real-world conditions

    Comparison of left ventricular deformation abnormalities by echocardiography with cardiac magnetic resonance imaging in patients with acute myocarditis and preserved left ventricular ejection fraction

    Get PDF
    PURPOSE: Cardiac magnetic resonance imaging (cMRI) represents the gold standard to detect myocarditis. Left ventricular (LV) deformation imaging provides additional diagnostic options presumably exceeding conventional transthoracic echocardiography (TTE). The present study aimed to analyze the feasibility to detect myocarditis in patients (pts) with preserved LV ejection fraction (LVEF) by TTE compared to cMRI. It has been hypothesized that the number of pathological findings by deformation imaging correspond to findings in cMRI.METHODS AND RESULTS: Between January 2018 and February 2020 102 pts with acute myocarditis according to the modified Lake Louise criteria and early gadolinium enhancement (EGE) by cMRI were identified at the department of cardiology at the University Hospital Leipzig. Twenty-six pts were included in this retrospective comparative study based on specific selection criteria. Twelve pts with normal cMRI served as a control group. LV deformation was analyzed by global and regional longitudinal strain (GLS, rLS), global and regional circumferential and radial strain (GCS, rCS, GRS, rRS), and LV rotation (including layer strain analysis). All parameters were compared to findings of edema, inflammation, and fibrosis by cMRI according to Lake Louise criteria. All pts with acute myocarditis diagnosed by cMRI showed pathological findings in TTE. Especially rCS and LV rotation analyzed by regional layer strain exhibit a high concordance with pathological findings in cMRI. In controls no LV deformation abnormalities were documented. Mean values of GLS, GRS, and GCS were not significantly different between pts with acute myocarditis and controls.CONCLUSION: This retrospective analysis documents the feasibility of detecting regional deformation abnormalities by echocardiography in patients with acute myocarditis confirmed by cMRI. The detection of pathological findings due to myocarditis requires the determination of regional deformation parameters, particularly rCS and LV rotation. The assessment of global strain values does not appear to be of critical value.</p

    Left ventricular mechanical dispersion in flow-gradient patterns of severe aortic stenosis with narrow QRS complex

    No full text
    Patients with severe aortic stenosis are classified according to flow-gradient patterns. We investigated whether left ventricular (LV) mechanical dispersion, a marker of dyssynchrony and predictor of mortality, is associated with low-flow status in aortic stenosis. 316 consecutive patients with aortic stenosis and QRS duration &amp;lt; 120 ms were included in the retrospective analysis. Patients with severe aortic stenosis (aortic valve area ≤ 1.0 c

    Table1_Comparison of left ventricular deformation abnormalities by echocardiography with cardiac magnetic resonance imaging in patients with acute myocarditis and preserved left ventricular ejection fraction.docx

    No full text
    PurposeCardiac magnetic resonance imaging (cMRI) represents the gold standard to detect myocarditis. Left ventricular (LV) deformation imaging provides additional diagnostic options presumably exceeding conventional transthoracic echocardiography (TTE). The present study aimed to analyze the feasibility to detect myocarditis in patients (pts) with preserved LV ejection fraction (LVEF) by TTE compared to cMRI. It has been hypothesized that the number of pathological findings by deformation imaging correspond to findings in cMRI.Methods and resultsBetween January 2018 and February 2020 102 pts with acute myocarditis according to the modified Lake Louise criteria and early gadolinium enhancement (EGE) by cMRI were identified at the department of cardiology at the University Hospital Leipzig. Twenty-six pts were included in this retrospective comparative study based on specific selection criteria. Twelve pts with normal cMRI served as a control group. LV deformation was analyzed by global and regional longitudinal strain (GLS, rLS), global and regional circumferential and radial strain (GCS, rCS, GRS, rRS), and LV rotation (including layer strain analysis). All parameters were compared to findings of edema, inflammation, and fibrosis by cMRI according to Lake Louise criteria. All pts with acute myocarditis diagnosed by cMRI showed pathological findings in TTE. Especially rCS and LV rotation analyzed by regional layer strain exhibit a high concordance with pathological findings in cMRI. In controls no LV deformation abnormalities were documented. Mean values of GLS, GRS, and GCS were not significantly different between pts with acute myocarditis and controls.ConclusionThis retrospective analysis documents the feasibility of detecting regional deformation abnormalities by echocardiography in patients with acute myocarditis confirmed by cMRI. The detection of pathological findings due to myocarditis requires the determination of regional deformation parameters, particularly rCS and LV rotation. The assessment of global strain values does not appear to be of critical value.</p

    Datasheet1_Comparison of left ventricular deformation abnormalities by echocardiography with cardiac magnetic resonance imaging in patients with acute myocarditis and preserved left ventricular ejection fraction.pdf

    No full text
    PurposeCardiac magnetic resonance imaging (cMRI) represents the gold standard to detect myocarditis. Left ventricular (LV) deformation imaging provides additional diagnostic options presumably exceeding conventional transthoracic echocardiography (TTE). The present study aimed to analyze the feasibility to detect myocarditis in patients (pts) with preserved LV ejection fraction (LVEF) by TTE compared to cMRI. It has been hypothesized that the number of pathological findings by deformation imaging correspond to findings in cMRI.Methods and resultsBetween January 2018 and February 2020 102 pts with acute myocarditis according to the modified Lake Louise criteria and early gadolinium enhancement (EGE) by cMRI were identified at the department of cardiology at the University Hospital Leipzig. Twenty-six pts were included in this retrospective comparative study based on specific selection criteria. Twelve pts with normal cMRI served as a control group. LV deformation was analyzed by global and regional longitudinal strain (GLS, rLS), global and regional circumferential and radial strain (GCS, rCS, GRS, rRS), and LV rotation (including layer strain analysis). All parameters were compared to findings of edema, inflammation, and fibrosis by cMRI according to Lake Louise criteria. All pts with acute myocarditis diagnosed by cMRI showed pathological findings in TTE. Especially rCS and LV rotation analyzed by regional layer strain exhibit a high concordance with pathological findings in cMRI. In controls no LV deformation abnormalities were documented. Mean values of GLS, GRS, and GCS were not significantly different between pts with acute myocarditis and controls.ConclusionThis retrospective analysis documents the feasibility of detecting regional deformation abnormalities by echocardiography in patients with acute myocarditis confirmed by cMRI. The detection of pathological findings due to myocarditis requires the determination of regional deformation parameters, particularly rCS and LV rotation. The assessment of global strain values does not appear to be of critical value.</p

    Elucidation of the genetic causes of bicuspid aortic valve disease.

    Get PDF
    AIMS The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect. METHODS AND RESULTS We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29. The single nucleotide polymorphism rs2550262 was genome-wide significant BAV associated (P = 3.49 × 10-08) and was replicated in an independent case-control sample. The risk locus encodes a deleterious missense variant in MUC4 (p.Ala4821Ser), a gene that is involved in epithelial-to-mesenchymal transformation. Mechanistical studies in zebrafish revealed that loss of Muc4 led to a delay in cardiac valvular development suggesting that loss of MUC4 may also play a role in aortic valve malformation. The GWAS also confirmed previously reported BAV risk loci at PALMD (P = 3.97 × 10-16), GATA4 (P = 1.61 × 10-09), and TEX41 (P = 7.68 × 10-04). In addition, the genetic BAV architecture was examined beyond the single-marker level revealing that a substantial fraction of BAV heritability is polygenic and ∼20% of the observed heritability can be explained by our GWAS data. Furthermore, we used the largest human single-cell atlas for foetal gene expression and show that the transcriptome profile in endothelial cells is a major source contributing to BAV pathology. CONCLUSION Our study provides a deeper understanding of the genetic risk architecture of BAV formation on the single marker and polygenic level

    Elucidation of the genetic causes of bicuspid aortic valve disease

    No full text
    Aims The present study aims to characterize the genetic risk architecture of bicuspid aortic valve (BAV) disease, the most common congenital heart defect. Methods and results We carried out a genome-wide association study (GWAS) including 2236 BAV patients and 11 604 controls. This led to the identification of a new risk locus for BAV on chromosome 3q29. The single nucleotide polymorphism rs2550262 was genome-wide significant BAV associated (P = 3.49 x 10(-08)) and was replicated in an independent case-control sample. The risk locus encodes a deleterious missense variant in MUC4 (p.Ala4821Ser), a gene that is involved in epithelial-to-mesenchymal transformation. Mechanistical studies in zebrafish revealed that loss of Muc4 led to a delay in cardiac valvular development suggesting that loss of MUC4 may also play a role in aortic valve malformation. The GWAS also confirmed previously reported BAV risk loci at PALMD (P = 3.97 x 10(-16)), GATA4 (P = 1.61 x 10(-09)), and TEX41 (P = 7.68 x 10(-04)). In addition, the genetic BAV architecture was examined beyond the single-marker level revealing that a substantial fraction of BAV heritability is polygenic and similar to 20% of the observed heritability can be explained by our GWAS data. Furthermore, we used the largest human single-cell atlas for foetal gene expression and show that the transcriptome profile in endothelial cells is a major source contributing to BAV pathology. Conclusion Our study provides a deeper understanding of the genetic risk architecture of BAV formation on the single marker and polygenic level
    corecore