2,319 research outputs found

    Cluster update and recognition

    Full text link
    We present a fast and robust cluster update algorithm that is especially efficient in implementing the task of image segmentation using the method of superparamagnetic clustering. We apply it to a Potts model with spin interactions that are are defined by gray-scale differences within the image. Motivated by biological systems, we introduce the concept of neural inhibition to the Potts model realization of the segmentation problem. Including the inhibition term in the Hamiltonian results in enhanced contrast and thereby significantly improves segmentation quality. As a second benefit we can - after equilibration - directly identify the image segments as the clusters formed by the clustering algorithm. To construct a new spin configuration the algorithm performs the standard steps of (1) forming clusters and of (2) updating the spins in a cluster simultaneously. As opposed to standard algorithms, however, we share the interaction energy between the two steps. Thus the update probabilities are not independent of the interaction energies. As a consequence, we observe an acceleration of the relaxation by a factor of 10 compared to the Swendson and Wang procedure.Comment: 4 pages, 2 figure

    Dynamic behaviors in directed networks

    Full text link
    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks

    On U_q(SU(2))-symmetric Driven Diffusion

    Full text link
    We study analytically a model where particles with a hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The system dynamics are given by the \mbox{Uq_{q}[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic Heisenberg antiferromagnet. Exploiting this symmetry we derive exact expressions for various correlation functions. We discuss the density profile and the two-point function and compute the correlation length ξs\xi_s as well as the correlation time ξt\xi_t. The dynamics of the density and the correlations are shown to be governed by the energy gaps of a one-particle system. For large systems ξs\xi_s and ξt\xi_t depend only on the asymmetry. For small asymmetry one finds ξtξs2\xi_t \sim \xi_s^2 indicating a dynamical exponent z=2z=2 as for symmetric diffusion.Comment: 10 pages, LATE

    Synchronization and Redundancy: Implications for Robustness of Neural Learning and Decision Making

    Full text link
    Learning and decision making in the brain are key processes critical to survival, and yet are processes implemented by non-ideal biological building blocks which can impose significant error. We explore quantitatively how the brain might cope with this inherent source of error by taking advantage of two ubiquitous mechanisms, redundancy and synchronization. In particular we consider a neural process whose goal is to learn a decision function by implementing a nonlinear gradient dynamics. The dynamics, however, are assumed to be corrupted by perturbations modeling the error which might be incurred due to limitations of the biology, intrinsic neuronal noise, and imperfect measurements. We show that error, and the associated uncertainty surrounding a learned solution, can be controlled in large part by trading off synchronization strength among multiple redundant neural systems against the noise amplitude. The impact of the coupling between such redundant systems is quantified by the spectrum of the network Laplacian, and we discuss the role of network topology in synchronization and in reducing the effect of noise. A range of situations in which the mechanisms we model arise in brain science are discussed, and we draw attention to experimental evidence suggesting that cortical circuits capable of implementing the computations of interest here can be found on several scales. Finally, simulations comparing theoretical bounds to the relevant empirical quantities show that the theoretical estimates we derive can be tight.Comment: Preprint, accepted for publication in Neural Computatio

    On generalized cluster algorithms for frustrated spin models

    Full text link
    Standard Monte Carlo cluster algorithms have proven to be very effective for many different spin models, however they fail for frustrated spin systems. Recently a generalized cluster algorithm was introduced that works extremely well for the fully frustrated Ising model on a square lattice, by placing bonds between sites based on information from plaquettes rather than links of the lattice. Here we study some properties of this algorithm and some variants of it. We introduce a practical methodology for constructing a generalized cluster algorithm for a given spin model, and investigate apply this method to some other frustrated Ising models. We find that such algorithms work well for simple fully frustrated Ising models in two dimensions, but appear to work poorly or not at all for more complex models such as spin glasses.Comment: 34 pages in RevTeX. No figures included. A compressed postscript file for the paper with figures can be obtained via anonymous ftp to minerva.npac.syr.edu in users/paulc/papers/SCCS-527.ps.Z. Syracuse University NPAC technical report SCCS-52

    Breaking quantum linearity: constraints from human perception and cosmological implications

    Full text link
    Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter lambda, coming from the analysis of the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.Comment: 13 pages, LaTeX, 3 figure

    A quantitative theory of current-induced step bunching on Si(111)

    Full text link
    We use a one-dimensional step model to study quantitatively the growth of step bunches on Si(111) surfaces induced by a direct heating current. Parameters in the model are fixed from experimental measurements near 900 deg C under the assumption that there is local mass transport through surface diffusion and that step motion is limited by the attachment rate of adatoms to step edges. The direct heating current is treated as an external driving force acting on each adatom. Numerical calculations show both qualitative and quantitative agreement with experiment. A force in the step down direction will destabilize the uniform step train towards step bunching. The average size of the step bunches grows with electromigration time as t^beta, with beta = 0.5, in agreement with experiment and with an analytical treatment of the steady states. The model is extended to include the effect of direct hopping of adatoms between different terraces. Monte-Carlo simulations of a solid-on-solid model, using physically motivated assumptions about the dynamics of surface diffusion and attachment at step edges, are carried out to study two dimensional features that are left out of the present step model and to test its validity. These simulations give much better agreement with experiment than previous work. We find a new step bending instability when the driving force is along the step edge direction. This instability causes the formation of step bunches and antisteps that is similar to that observed in experiment.Comment: 11 pages, 7 figure

    General Framework for phase synchronization through localized sets

    Full text link
    We present an approach which enables to identify phase synchronization in coupled chaotic oscillators without having to explicitly measure the phase. We show that if one defines a typical event in one oscillator and then observes another one whenever this event occurs, these observations give rise to a localized set. Our result provides a general and easy way to identify PS, which can also be used to oscillators that possess multiple time scales. We illustrate our approach in networks of chemically coupled neurons. We show that clusters of phase synchronous neurons may emerge before the onset of phase synchronization in the whole network, producing a suitable environment for information exchanging. Furthermore, we show the relation between the localized sets and the amount of information that coupled chaotic oscillator can exchange

    Genetic control of cellular morphogenesis in Müller glia.

    Get PDF
    Cell shape is critical for the proper function of every cell in every tissue in the body. This is especially true for the highly morphologically diverse neural and glia cells of the central nervous system. The molecular processes by which these, or indeed any, cells gain their particular cell-specific morphology remain largely unexplored. To identify the genes involved in the morphogenesis of the principal glial cell type in the vertebrate retina, the Müller glia (MG), we used genomic and CRISPR based strategies in zebrafish (Danio rerio). We identified 41 genes involved in various aspects of MG cell morphogenesis and revealed a striking concordance between the sequential steps of anatomical feature addition and the expression of cohorts of functionally related genes that regulate these steps. We noted that the many of the genes preferentially expressed in zebrafish MG showed conservation in glia across species suggesting evolutionarily conserved glial developmental pathways.The work was supported by a Marie Curie Individual Fellowship (MSCA-IF-2015-707668) to MCP, a JG Graves Medical Research Fellowship and Wellcome Trust Seed Award (210152/Z/18/Z) to RBM and an Investigator Award from the Wellcome Trust (SIA 100329/Z/12/Z) to WAH
    corecore