1,259 research outputs found
Cation and anion transport through hydrophilic pores in lipid bilayers
To understand the origin of transmembrane potentials, formation of transient pores, and the movement of anions and cations across lipid membranes, we have performed systematic atomistic molecular dynamics simulations of palmitoyl-oleoyl-phosphatidylcholine (POPC) lipids. A double bilayer setup was employed and different transmembrane potentials were generated by varying the anion (Cl−)(Cl−) and cation (Na+)(Na+) concentrations in the two water compartments. A transmembrane potential of ∼ 350 mV∼350mV was thereby generated per bilayer for a unit charge imbalance. For transmembrane potential differences of up to ∼ 1.4 V∼1.4V, the bilayers were stable, over the time scale of the simulations (10–50 ns)(10–50ns). At larger imposed potential differences, one of the two bilayers breaks down through formation of a water pore, leading to both anion and cation translocations through the pore. The anions typically have a short residence time inside the pore, while the cations show a wider range of residence times depending on whether they bind to a lipid molecule or not. Over the time scale of the simulations, we do not observe the discharge of the entire potential difference, nor do we observe pore closing, although we observe that the size of the pore decreases as more ions translocate. We also observed a rare lipid flip-flop, in which a lipid molecule translocated from one bilayer leaflet to the opposite leaflet, assisted by the water pore.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87872/2/074901_1.pd
Implementation of Fault-tolerant Quantum Logic Gates via Optimal Control
The implementation of fault-tolerant quantum gates on encoded logic qubits is
considered. It is shown that transversal implementation of logic gates based on
simple geometric control ideas is problematic for realistic physical systems
suffering from imperfections such as qubit inhomogeneity or uncontrollable
interactions between qubits. However, this problem can be overcome by
formulating the task as an optimal control problem and designing efficient
algorithms to solve it. In particular, we can find solutions that implement all
of the elementary logic gates in a fixed amount of time with limited control
resources for the five-qubit stabilizer code. Most importantly, logic gates
that are extremely difficult to implement using conventional techniques even
for ideal systems, such as the T-gate for the five-qubit stabilizer code, do
not appear to pose a problem for optimal control.Comment: 18 pages, ioptex, many figure
Modelling of a thin film thermoelectric micro-Peltier module
A micro Peltier cooler/heater module has been modelled. The module consists of n-type bismuth telluride and p-type antimony telluride thermoelectric materials. The commercial software package CFD-ACE+ has been used to implement and analyse the model. A two-dimensional coupled electrical and thermal simulation was performed. This software includes the possibility to incorporate the Peltier effect. The temperature, electric field intensity and wall heat flux distributions were simulated for different applied potentials. The variation in temperature difference with respect to the Seebeck coefficient of the material was calculated and analysed
Stark tuning of the charge states of a two-donor molecule in silicon
Gate control of phosphorus donor based charge qubits in Si is investigated
using a tight-binding approach. Excited molecular states of P2+ are found to
impose limits on the allowed donor separations and operating gate voltages. The
effects of surface (S) and barrier (B) gates are analyzed in various voltage
regimes with respect to the quantum confined states of the whole device.
Effects such as interface ionization, saturation of the tunnel coupling,
sensitivity to donor and gate placement are also studied. It is found that
realistic gate control is smooth for any donor separation, although at certain
donor orientations the S and B gates may get switched in functionality. This
paper outlines and analyzes the various issues that are of importance in
practical control of such donor molecular systems.Comment: 8 pages, 9 figure
Cross-talk compensation of hyperfine control in donor qubit architectures
We theoretically investigate cross-talk in hyperfine gate control of
donor-qubit quantum computer architectures, in particular the Kane proposal. By
numerically solving the Poisson and Schr\"{o}dinger equations for the gated
donor system, we calculate the change in hyperfine coupling and thus the error
in spin-rotation for the donor nuclear-electron spin system, as the gate-donor
distance is varied. We thus determine the effect of cross-talk - the
inadvertent effect on non-target neighbouring qubits - which occurs due to
closeness of the control gates (20-30nm). The use of compensation protocols is
investigated, whereby the extent of crosstalk is limited by the application of
compensation bias to a series of gates. In light of these factors the
architectural implications are then considered.Comment: 15 pages, 22 figures, submitted to Nanotechnolog
Insecticidal effects of deltamethrin in laboratory and field populations of Culicoides species: how effective are host-contact reduction methods in India?
BACKGROUND: Bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), a clinical disease observed primarily in sheep. BT has a detrimental effect on subsistence farmers in India, where hyperendemic outbreaks impact on smallholdings in the southern states of the country. In this study, we establish a reliable method for testing the toxic effects of deltamethrin on Culicoides and then compare deltamethrin with traditional control methods used by farmers in India. RESULTS: Effects of deltamethrin were initially tested using a colonised strain of Culicoides nubeculosus Meigen and a modified World Health Organisation exposure assay. This method was then applied to field populations of Culicoides spp. in India. The field population of C. oxystoma in India had a greater LC50 (0.012 ± 0.009%) for deltamethrin than laboratory-reared C.nubeculosus (0.0013 ± 0.0002%). Exposure of C. nubeculosus to deltamethrin at higher ambient temperatures resulted in greater rates of knockdown but a lower mortality rate at 24 h post-exposure. Behavioural assays with C. nubeculosus in WHO tubes provided evidence for contact irritancy and spatial repellence caused by deltamethrin. The field experiments in India, however, provided no evidence for repellent or toxic effects of deltamethrin. Traditional methods such as the application of neem oil and burning of neem leaves also provided no protection. CONCLUSIONS: Our study demonstrates that field-collected Culicoides in India are less susceptible to deltamethrin exposure than laboratory-bred C. nubeculosus and traditional methods of insect control do not provide protection to sheep. These low levels of susceptibility to deltamethrin have not been recorded before in field populations of Culicoides and suggest resistance to synthetic pyrethrioids. Alternative insect control methods, in addition to vaccination, may be needed to protect Indian livestock from BTV transmission
A randomized controlled trial of the effects of a prudent diet on cardiovascular risk factors, gene expression, and DNA methylation - the Diet and Genetic Intervention (DIGEST) Pilot study
Background Risk of cardiovascular disease (CVD) can be increased by single-nucleotide polymorphisms (SNPs) in the 9p21 region of the genome. However, observational studies have shown that the deleterious effect of 9p21 SNPs on CVD might be offset by consuming a diet rich in fresh fruits and vegetables. This association may be driven by diet-influenced modifications in epigenetic and gene expression profiles. In this pilot study, we aimed to: i. test the feasibility of provision of a ‘Prudent’ and ‘Western’ diet outside of a specialized clinic, ii. assess the impact of each diet on cardiovascular risk factors. Methods A single centre, parallel two-arm, pilot randomized controlled trial (RCT) with food provision was conducted in a university teaching hospital outpatient clinic (McMaster university, Hamilton, ON, Canada). The aim was to recruit 80 participants, which allowed for a 10 % dropout. The actual study consisted of 84 apparently healthy participants (69 % women, 18 to 77 years) at low cardiovascular risk. Participants were randomly assigned to follow one of two weight-maintaining diets: ‘Prudent’ or ‘Western’ for 2-weeks. The Prudent diet provided 92 % of provided food consumed). The Prudent diet was 48 % more palatable than the Western diet (P < 0.05). Participants receiving the Prudent diet showed a trend toward reduced systolic (-4 mmHg; P = 0.10) and diastolic (-3 mmHg; P = 0.07) blood pressure, and total cholesterol (-0.24 mmol/L; P = 0.08), compared to individuals receiving the Western diet. Data collection from all randomized participants was completed within 18 months. Conclusions Recruitment, and retention of apparently healthy, normotensive adults into a feeding study for a 2-week duration is feasible outside of specialized dietary clinic, and modest diet-related changes in biomarkers begin to appear after two weeks
SOME ABSTRACT PROPERTIES OF SEMIGROUPS APPEARING IN SUPERCONFORMAL THEORIES
A new type of semigroups which appears while dealing with
superconformal symmetry in superstring theories is considered. The ideal series
having unusual abstract properties is constructed. Various idealisers are
introduced and studied. The ideal quasicharacter is defined. Green's relations
are found and their connection with the ideal quasicharacter is established.Comment: 11 page
On dynamic network entropy in cancer
The cellular phenotype is described by a complex network of molecular
interactions. Elucidating network properties that distinguish disease from the
healthy cellular state is therefore of critical importance for gaining
systems-level insights into disease mechanisms and ultimately for developing
improved therapies. By integrating gene expression data with a protein
interaction network to induce a stochastic dynamics on the network, we here
demonstrate that cancer cells are characterised by an increase in the dynamic
network entropy, compared to cells of normal physiology. Using a fundamental
relation between the macroscopic resilience of a dynamical system and the
uncertainty (entropy) in the underlying microscopic processes, we argue that
cancer cells will be more robust to random gene perturbations. In addition, we
formally demonstrate that gene expression differences between normal and cancer
tissue are anticorrelated with local dynamic entropy changes, thus providing a
systemic link between gene expression changes at the nodes and their local
network dynamics. In particular, we also find that genes which drive
cell-proliferation in cancer cells and which often encode oncogenes are
associated with reductions in the dynamic network entropy. In summary, our
results support the view that the observed increased robustness of cancer cells
to perturbation and therapy may be due to an increase in the dynamic network
entropy that allows cells to adapt to the new cellular stresses. Conversely,
genes that exhibit local flux entropy decreases in cancer may render cancer
cells more susceptible to targeted intervention and may therefore represent
promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte
- …
