5 research outputs found

    Lyngbyastatins 8–10, Elastase Inhibitors with Cyclic Depsipeptide Scaffolds Isolated from the Marine Cyanobacterium Lyngbya semiplena

    Get PDF
    Investigation of an extract from the marine cyanobacterium Lyngbya semiplena, collected in Tumon Bay, Guam, led to the identification of three new cyclodepsipeptides, lyngbyastatins 8–10 (1–3). The structures of 1–3 were determined by NMR, MS, ESIMS fragmentation and chemical degradation. Compounds 1–3 are closely related to lyngbyastatins 4–7. Like the latter compounds, we found 1–3 to inhibit porcine pancreatic elastase, with IC50 values of 123 nM, 210 nM and 120 nM, respectively

    Potent Elastase Inhibitors from Cyanobacteria: Structural Basis and Mechanisms Mediating Cytoprotective and Anti-Inflammatory Effects in Bronchial Epithelial Cells

    No full text
    We discovered new structural diversity to a prevalent, yet medicinally underappreciated, cyanobacterial protease inhibitor scaffold and undertook comprehensive protease profiling to reveal potent and selective elastase inhibition. Structure-activity relationship (SAR) studies and X-ray cocrystal structure analysis allowed a detailed assessment of critical and tunable structural elements. To realize the therapeutic potential of these cyclodepsipeptides, we probed the cellular effects of a novel and representative family member, symplostatin 5 (<b>1</b>), which attenuated the downstream cellular effects of elastase in an epithelial lung airway model system, alleviating clinical hallmarks of chronic pulmonary diseases such as cell death, cell detachment, and inflammation. This compound attenuated the effects of elastase on receptor activation, proteolytic processing of the adhesion protein ICAM-1, NF-κB activation, and transcriptomic changes, including the expression of pro-inflammatory cytokines <i>IL1A</i>, <i>IL1B</i>, and <i>IL8</i>. Compound <b>1</b> exhibited activity comparable to the clinically approved elastase inhibitor sivelestat in short-term assays and demonstrated superior sustained activity in longer-term assays
    corecore