27 research outputs found

    Adverse prognosis of epigenetic inactivation in RUNX3 gene at 1p36 in human pancreatic cancer

    Get PDF
    Alteration in transforming growth factor-β signalling pathway is one of the main causes of pancreatic cancer. The human runt-related transcription factor 3 gene (RUNX3) is an important component of this pathway. RUNX3 locus 1p36 is commonly deleted in a variety of human cancers, including pancreatic cancer. Therefore, we examined genetic and epigenetic alterations of RUNX3 in human pancreatic cancer. Thirty-two patients with pancreatic cancer were investigated in this study. We examined the methylation status of RUNX3 promoter region, loss of heterozygosity (LOH) at 1p36, and conducted a mutation analysis. The results were compared with clinicopathological data. Promoter hypermethylation was detected in 20 (62.5%) of 32 pancreatic cancer tissues, confirmed by sequence of bisulphite-treated DNA. Loss of heterozygosity was detected in 11 (34.3%) of 32 pancreatic cancers. In comparison with clinicopathological data, hypermethylation showed a relation with a worse prognosis (P=0.0143). Hypermethylation and LOH appear to be common mechanisms for inactivation of RUNX3 in pancreatic cancer. Therefore, RUNX3 may be an important tumour suppressor gene related to pancreatic cancer

    Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is highly malignant and prone to multicentric occurrence. Differentiation between a true relapse of HCC and a second primary tumour appearing is of clinical importance. At this point, no convenient method is available to determine the origin of these HCCs. Tissue samples were obtained from 19 patients and analysed for the promoter hypermethylation status of multiple tumour suppressor genes (p16, DAP-Kinase, MGMT, GSTP1, APC, RIZ1, SFRP1, SFRP2, SFRP5, RUNX3, and SOCS1) using methylation-specific PCR (MSP). Methylation status was used to determine tumour clonality. In each of the 19 cases, at least one tumour was recognised as having an aberrantly methylated gene. The frequency of the methylation in tumour tissue was 57.1% in p16, 2.4% in DAP-kinase, 23.8% in GSTP1, 90.5% in APC, 45.2% in RIZ1, 64.3% in SFRP1, 59.5% in SFRP2, 28.6% in SFRP5, 47.6% in RUNX3, and 54.8% in SOCS1, while in MGMT, no aberrant methylation was detected. The methylation status of these genes was assessed using MSP as being either positive or negative, and was used to determine the tumour clonality. The clonality of every tumour could be decided even with lesions that could not be judged by clinical diagnosis or by another molecular method (mt DNA mutation). Determining the methylation status of multiple genes in multicentric HCC was useful as a clonal marker and provided useful information for characterising the tumour. From our findings, multicentric HCCs tend to occur more independently than metastatically from the original tumour. Expanded study should be pursued further for a better understanding of the molecular mechanism of hepatocarcinogenesis

    A Case of Carcinosarcoma of the Pancreatic Body

    No full text
    corecore