32 research outputs found

    Analysis of Reactive Oxygen Metabolites (ROMs) after Cardiovascular Surgery as a Marker of Oxidative Stress

    Get PDF
    The transient systemic low perfusion that occurs during cardiovascular surgery leads to oxidative stress and the production of free radicals. A systemic increase of various markers of oxidative stress has been shown to occur during cardiopulmonary bypass (CPB). However, these markers have not been adequately evaluated because they seem to be reactive and short-lived. Here, oxidative stress was measured using the free radical analytical system (FRAS 4) assessing the derivatives of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP). Blood samples were taken from 21 patients undergoing elective cardiovascular surgery. CPB was used in 15 patients, and abdominal aortic aneurysm (AAA) surgery without CPB was performed in 6. Measurements of d-ROMs and BAP were taken before surgery, 1 day, 1 week, and 2 weeks after surgery, and oxidative stress was evaluated. The d-ROM level increased gradually after cardiovascular surgery up to 2 weeks. Over time, the d-ROM level after surgery involving CPB became higher than that after AAA surgery. This difference reached statistical significance at 1 week and lasted to 2 weeks. The prolongation of CPB was prone to elevate the d-ROM level whereas the duration of the aortic clamp in AAA surgery had no relation to the d-ROM level. The BAP was also elevated after surgery, and was positively correlated with the level of d-ROMs. In this study, patients who underwent cardiovascular surgery involving CPB had significant oxidative damage. The production of ROMs was shown to depend on the duration of CPB. Damage can be reduced if CPB is avoided. When CPB must be used, shortening the CPB time may be effective in reducing oxidative stress

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Anther culture in rice proportionally rescues microspores according to gametophytic gene effect and enhances genetic study of hybrid sterility

    Get PDF
    BackgroundTo investigate plant hybrid sterility, we studied interspecific hybrids of two cultivated rice species, Asian rice (Oryza sativa) and African rice (O. glaberrima). Male gametes of these hybrids display complete sterility owing to a dozen of hybrid sterility loci, termed HS loci, but this complicated genetic system remains poorly understood.ResultsMicrospores from these interspecific hybrids form sterile pollen but are viable at the immature stage. Application of the anther culture (AC) method caused these immature microspores to induce callus. The segregation distortion of 11 among 13 known HS loci was assessed in the callus population. Using many individual calli, fine mapping of the HS loci was attempted based on heterozygotes produced from chromosome segment substitution lines (CSSLs). Transmission ratio distortion (TRD) from microspores was detected at 6 of 11 HS loci in the callus population. The fine mapping of S-1 and S-19 loci using CSSLs revealed precise distances of markers from the positions of HS loci exhibiting excessive TRD.ConclusionsWe demonstrated that AC to generate callus populations derived from immature microspores is a useful methodology for genetic study. The callus population facilitated detection of TRD at multiple HS loci and dramatically shortened the process for mapping hybrid sterility genes

    Emergency thoracic endovascular aortic repair with celiac artery coverage in hereditary hemorrhagic telangiectasia

    No full text
    Celiac artery (CA) coverage during thoracic endovascular aortic repair has been demonstrated to be a feasible and effective strategy for selected cases. However, there is a potential risk of ischemic complications due to CA coverage in patients with certain types of hereditary hemorrhagic telangiectasia (HHT). Herein, we report a case of thoracoabdominal aortic rupture in a patient with HHT that was successfully treated with emergency thoracic endovascular aortic repair covering the CA preceded by hepatic artery bypass. We also review the hepatic circulatory derangements and unique considerations in the surgical management of HHT
    corecore