6 research outputs found

    Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency: Report on 30 Patients.

    Get PDF
    Deficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-α) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2. We conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS). Thirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2-28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5-16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT. HCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency. HCT is a definitive cure for DADA2 with > 95% survival

    Hematopoietic cell transplantation cures adenosine deaminase 2 deficiency: report on 30 patients

    Get PDF
    Purpose Deficiency of adenosine deaminase 2 (DADA2) is an inherited inborn error of immunity, characterized by autoinflammation (recurrent fever), vasculopathy (livedo racemosa, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency, lymphoproliferation, immune cytopenias, and bone marrow failure (BMF). Tumor necrosis factor (TNF-alpha) blockade is the treatment of choice for the vasculopathy, but often fails to reverse refractory cytopenia. We aimed to study the outcome of hematopoietic cell transplantation (HCT) in patients with DADA2. Methods We conducted a retrospective study on the outcome of HCT in patients with DADA2. The primary outcome was overall survival (OS). Results Thirty DADA2 patients from 12 countries received a total of 38 HCTs. The indications for HCT were BMF, immune cytopenia, malignancy, or immunodeficiency. Median age at HCT was 9 years (range: 2-28 years). The conditioning regimens for the final transplants were myeloablative (n = 20), reduced intensity (n = 8), or non-myeloablative (n = 2). Donors were HLA-matched related (n = 4), HLA-matched unrelated (n = 16), HLA-haploidentical (n = 2), or HLA-mismatched unrelated (n = 8). After a median follow-up of 2 years (range: 0.5-16 years), 2-year OS was 97%, and 2-year GvHD-free relapse-free survival was 73%. The hematological and immunological phenotypes resolved, and there were no new vascular events. Plasma ADA2 enzyme activity normalized in 16/17 patients tested. Six patients required more than one HCT. Conclusion HCT was an effective treatment for DADA2, successfully reversing the refractory cytopenia, as well as the vasculopathy and immunodeficiency. Clinical Implications HCT is a definitive cure for DADA2 with > 95% survival.Transplantation and immunomodulatio

    Hypomorphic RAG deficiency: Impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT.

    No full text
    Patients with hypomorphic mutations in RAG1 or RAG2 genes present as either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïveCD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation

    Hypomorphic RAG deficiency: impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT

    No full text
    © 2022 The American Society of HematologyPatients with hypomorphic mutations in RAG1 or RAG2 genes present as either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïveCD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation

    Allogeneic Transplantation to Treat Therapy-Related Myelodysplastic Syndrome and Acute Myelogenous Leukemia in Adults

    No full text
    Patients who develop therapy-related myeloid neoplasm, either myelodysplastic syndrome (t-MDS) or acute myelogenous leukemia (t-AML), have a poor prognosis. An earlier Center for International Blood and Marrow Transplant Research (CIBMTR) analysis of 868 allogeneic hematopoietic cell transplantations (allo-HCTs) performed between 1990 and 2004 showed a 5-year overall survival (OS) and disease-free survival (DFS) of 22% and 21%, respectively. Modern supportive care, graft-versus-host disease prophylaxis, and reduced-intensity conditioning (RIC) regimens have led to improved outcomes. Therefore, the CIBMTR analyzed 1531 allo-HCTs performed in adults with t-MDS (n = 759) or t-AML (n = 772) between and 2000 and 2014. The median age was 59 years (range, 18 to 74 years) for the patients with t-MDS and 52 years (range, 18 to 77 years) for those with tAML. Twenty-four percent of patients with t-MDS and 11% of those with t-AML had undergone a previous autologous (auto-) HCT. A myeloablative conditioning (MAC) regimen was used in 49% of patients with t-MDS and 61% of patients with t-AML. Nonrelapse mortality at 5 years was 34% (95% confidence interval [CI], 30% to 37%) for patients with t-MDS and 34% (95% CI, 30% to 37%) for those with t-AML. Relapse rates at 5 years in the 2 groups were 46% (95% CI, 43% to 50%) and 43% (95% CI, 40% to 47%). Five-year OS and DFS were 27% (95% CI, 23% to 31%) and 19% (95% CI, 16% to 23%), respectively, for patients with t-MDS and 25% (95% CI, 22% to 28%) and 23% (95% CI, 20% to 26%), respectively, for those with t-AML. In multivariate analysis, OS and DFS were significantly better in young patients with low-risk t-MDS and those with t-AML undergoing HCT with MAC while in first complete remission, but worse for those with previous auto-HCT, higher-risk cytogenetics or Revised International Prognostic Scoring System score, and a partially matched unrelated donor. Relapse remains the major cause of treatment failure, with little improvement seen over the past 2 decades. These data mandate caution when recommending allo-HCT in these conditions and indicate the need for more effective antineoplastic approaches before and after allo-HCT. (C) 2021 Published by Elsevier Inc. on behalf of The American Society for Transplantation and Cellular Therapy

    Myeloablative Conditioning for Allogeneic Transplantation Results in Superior Disease-Free Survival for Acute Myelogenous Leukemia and Myelodysplastic Syndromes with Low/Intermediate but not High Disease Risk Index: A Center for International Blood and Marrow Transplant Research Study

    No full text
    Compared with reduced-intensity conditioning (RIC), myeloablative conditioning (MAC) is generally associated with lower relapse risk after allogeneic hematopoietic cell transplantation (HCT) for acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). However, disease-specific risk factors in AML/MDS can further inform when MAC and RIC may yield differential outcomes. We analyzed HCT outcomes stratified by the Disease Risk Index (DRI) in 4387 adults (age 40 to 65 years) to identify the impact of conditioning intensity. In the low/ intermediate-risk DRI cohort, RIC was associated with lower nonrelapse mortality (NRM) (hazard ratio [HR],.74; 95% confidence interval [CI],.62 to.88; P <.001) but significantly greater relapse risk (HR, 1.54; 95% CI, 1.35 to 1.76; P <.001) and thus inferior disease-free survival (DFS) (HR, 1.19; 95% CI, 1.07 to 1.33; P =.001). In the high/ very high-risk DRI cohort, RIC was associated with marginally lower NRM (HR,.83; 95% CI,.68 to 1.00; P =.051) and significantly higher relapse risk (HR, 1.23; 95% CI, 1.08 to 1.41; P =.002), leading to similar DFS using either RIC or MAC. These data support MAC over RIC as the preferred conditioning intensity for patients with AML/MDS with low/intermediate-risk DRI, but with a similar benefit as RIC in high/very high-risk DRI. Novel MAC regimens with less toxicity could benefit all patients, but more potent antineoplastic approaches are needed for the high/ very-high risk DRI group. (C) 2020 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights reserved
    corecore