543 research outputs found

    Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks

    Full text link
    We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.Comment: in press as a Note in Icaru

    Model-based kernel sum rule: kernel Bayesian inference with probabilistic model

    Get PDF
    Kernel Bayesian inference is a principled approach to nonparametric inference in probabilistic graphical models, where probabilistic relationships between variables are learned from data in a nonparametric manner. Various algorithms of kernel Bayesian inference have been developed by combining kernelized basic probabilistic operations such as the kernel sum rule and kernel Bayes’ rule. However, the current framework is fully nonparametric, and it does not allow a user to flexibly combine nonparametric and model-based inferences. This is inefficient when there are good probabilistic models (or simulation models) available for some parts of a graphical model; this is in particular true in scientific fields where “models” are the central topic of study. Our contribution in this paper is to introduce a novel approach, termed the model-based kernel sum rule (Mb-KSR), to combine a probabilistic model and kernel Bayesian inference. By combining the Mb-KSR with the existing kernelized probabilistic rules, one can develop various algorithms for hybrid (i.e., nonparametric and model-based) inferences. As an illustrative example, we consider Bayesian filtering in a state space model, where typically there exists an accurate probabilistic model for the state transition process. We propose a novel filtering method that combines model-based inference for the state transition process and data-driven, nonparametric inference for the observation generating process. We empirically validate our approach with synthetic and real-data experiments, the latter being the problem of vision-based mobile robot localization in robotics, which illustrates the effectiveness of the proposed hybrid approach

    Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies.

    Get PDF
    We report a new type of ultramafi c pseudotachylyte that forms a fault- and injection-vein network hosted in the mantle-derived Balmuccia peridotite (Italy). In the fault vein the pseudotachylyte is now deformed and recrystallized into a spinel-lherzolite facies ultramylonite, made of a fi ne (<2 μm) aggregate of olivine, orthopyroxene, clinopyroxene, and spinel, with small amounts of amphibole and dolomite. Electron backscattered diffraction study of the ultramylonite shows a clear crystallographic preferred orientation (CPO) of olivine. The fault vein pseudotachylyte overprints a spinel-lherzolite facies amphibole-bearing mylonite, indicating that shear localization accompanying chemical reaction had taken place in the peridotite before seismic slip produced frictional melting. The occurrence of amphibole in the host mylonite and that of dolomite as well as amphibole in the matrices of ultramylonite and pseudotachylyte may indicate that fl uid was present and had evolved in its composition from H2O-rich to CO2-rich during ductile deformation with metamorphic reactions, which may account for the observed rheological transition from ductile to brittle behavior. The spinel-lherzolite facies assemblage in mylonites, P-T estimations from pyroxene geothermometry and carbonate reactions, and the type of olivine CPO in deformed pseudotachylyte indicate that both the preseismic and the postseismic ductile deformations occurred at ~800 °C and 0.7–1.1 GPa
    • …
    corecore