2,917 research outputs found
The JPL telerobot operator control station. Part 1: Hardware
The Operator Control Station of the Jet Propulsion Laboratory (JPL)/NASA Telerobot Demonstrator System provides the man-machine interface between the operator and the system. It provides all the hardware and software for accepting human input for the direct and indirect (supervised) manipulation of the robot arms and tools for task execution. Hardware and software are also provided for the display and feedback of information and control data for the operator's consumption and interaction with the task being executed. The hardware design, system architecture, and its integration and interface with the rest of the Telerobot Demonstrator System are discussed
Strain and field modulation in bilayer graphene band structure
Using an external electric field, one can modulate the bandgap of Bernal
stacked bilayer graphene by breaking A-~B symmetry. We analyze strain effects
on the bilayer graphene using the extended Huckel theory and find that reduced
interlayer distance results in higher bandgap modulation, as expected.
Furthermore, above about 2.5 angstrom interlayer distance, the bandgap is
direct, follows a convex relation to electric field and saturates to a value
determined by the interlayer distance. However, below about 2.5 angstrom, the
bandgap is indirect, the trend becomes concave and a threshold electric field
is observed, which also depends on the stacking distance.Comment: 3 pages, 5 figures - v1 and v2 are the same, uploaded twice - v3,
some typos fixed and a reference adde
The thermal equation of state of FeTiO_3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures
We present in situ measurements of the unit-cell volume of a natural terrestrial ilmenite (Jagersfontein mine, South Africa) and a synthetic reduced ilmenite (FeTiO_3) at simultaneous high pressure and high temperature up to 16 GPa and 1273 K. Unit-cell volumes were determined using energy-dispersive synchrotron X-ray diffraction in a multi-anvil press. Mössbauer analyses show that the synthetic sample contained insignificant amounts of Fe^(3+) both before and after the experiment. Results were fit to Birch-Murnaghan thermal equations of state, which reproduce the experimental data to within 0.5 and 0.7 GPa for the synthetic and natural samples, respectively. At ambient conditions, the unit-cell volume of the natural sample [V_0 = 314.75 ± 0.23 (1 ) Å^3] is significantly smaller than that of the synthetic sample [V_0 = 319.12 ± 0.26 Å^3]. The difference can be attributed to the presence of impurities and Fe^(3+) in the natural sample. The 1 bar isothermal bulk moduli K_(T0) for the reduced ilmenite is slightly larger than for the natural ilmenite (181 ± 7 and 165 ± 6 GPa, respectively), with pressure derivatives K_0' = 3 ± 1. Our results, combined with literature data, suggest that the unit-cell volume of reduced ilmenite is significantly larger than that of oxidized ilmenite, whereas their thermoelastic parameters are similar. Our data provide more appropriate input parameters for thermo-chemical models of lunar interior evolution, in which reduced ilmenite plays a critical role
Appearance of Flat Bands and Edge States in Boron-Carbon-Nitride Nanoribbons
Presence of flat bands and edge states at the Fermi level in graphene
nanoribbons with zigzag edges is one of the most interesting and attracting
properties of nanocarbon materials but it is believed that they are quite
fragile states and disappear when B and N atoms are doped at around the edges.
In this paper, we theoretically investigate electronic and magnetic properties
of boron-carbon-nitride (BCN) nanoribbons with zigzag edges where the outermost
C atoms on the edges are alternately replaced with B and N atoms using the
first principles calculations. We show that BCN nanoribbons have the flat bands
and edge states at the Fermi level in both H_2 rich and poor environments. The
flat bands are similar to those at graphene nanoribbons with zigzag edges, but
the distributions of charge and spin densities are different between them. A
tight binding model and the Hubbard model analysis show that the difference in
the distribution of charge and spin densities is caused by the different site
energies of B and N atoms compared with C atoms.Comment: 5 pages; 3 figure
Fracture toughness testing using photogrammetry and digital image correlation
Digital image correlation (DIC) is an optical technique commonly used for measuring displacement fields by tracking artificially applied random speckle patterns, which can sometimes be a problem for tracking small-scale displacements. DIC is particularly useful for tracking the crack mouth opening displacement (CMOD) of a notched metallic specimen subjected to three-point bending for fracture toughness determination because the edges of the notch provide the required textural features for DIC without the need for speckle patterns. This simplifies the set-up process as the specimen and stage geometries do not need to account for the placement of a strain gauge. To enhance the accuracy of DIC, this study then successfully downscaled a photogrammetry technique commonly used to track crack propagation in large scale concrete tests so that the pixel coordinates of the captured images can be automatically related to their real-world coordinates, allowing for small scale displacements to be accurately tracked.ARC Linkage Project LP130100111, ARC DECRA DE15010170
Tackle your Tics:pilot findings of a brief, intensive group-based exposure therapy program for children with tic disorders
Tourette syndrome (TS) and other chronic tic disorders (CTD) are prevalent neurodevelopmental disorders, which can have a huge burden on families and society. Behavioral treatment is a first-line intervention for tic disorders. Despite demonstrated efficacy, tic reduction and utilization rates of behavioral treatment remain relatively low. Patient associations point to an urgent need for easy-to-undergo treatments that focus both on tic reduction and improvement of quality of life. To enhance treatment outcome and overcome treatment barriers, this pilot study's aim was to investigate the feasibility and preliminary results of a brief, intensive group-based treatment. Tackle your Tics is a 4-day intensive and comprehensive group-based program for children and adolescents (9-17 years) with a tic disorder, consisting of exposure and response prevention (ERP) treatment and additional supporting components, such as coping strategies, relaxing activities and parent support. Assessments were performed pre- and post-treatment and at 2 months follow-up, to test outcomes on tic severity and quality of life, and explore premonitory urges, emotional and behavioral functioning and treatment satisfaction (N = 14, of whom 13 completed the treatment). Parents and children rated this treatment positive on a treatment satisfaction questionnaire. On tic severity (Yale Global Tic Severity Scale) and quality of life (Gilles de la Tourette Syndrome Quality of Life Scale for children and adolescents), improvements between pre-treatment and follow-up were found. Intensive ERP in group format is promising as a feasible treatment to improve both tic severity as well as quality of life. Larger controlled trials are needed to establish its effectiveness
Threshold Electrodisintegration of ^3He
Cross sections were measured for the near-threshold electrodisintegration of
^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and
prior measurements the transverse and longitudinal response functions R_T and
R_L were deduced. Comparisons are made against previously published and new
non-relativistic A=3 calculations using the best available NN potentials. In
general, for q<2 fm^{-1} these calculations accurately predict the threshold
electrodisintegration of ^3He. Agreement at increasing q demands consideration
of two-body terms, but discrepancies still appear at the highest momentum
transfers probed, perhaps due to the neglect of relativistic dynamics, or to
the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review
Temperature Anisotropy in a Shocked Plasma: Mirror-Mode Instabilities in the Heliosheath
We show that temperature anisotropies induced at a shock can account for
interplanetary and planetary bow shock observations. Shocked plasma with
enhanced plasma beta is preferentially unstable to the mirror mode instability
downstream of a quasi-perpendicular shock and to the firehose instability
downstream of a quasi-parallel shock, consistent with magnetic fluctuations
observed downstream of a large variety of shocks. Our theoretical analysis of
the solar wind termination shock suggests that the magnetic holes observed by
Voyager 1 in the heliosheath are produced by the mirror mode instability. The
results are also of astrophysical interest, providing an energy source for
plasma heating.Comment: 11 pages, 2 figures, accepted for publication in ApJ Letter
Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag
We study the electrophoretic separation of polyelectrolytes of varying
lengths by means of end-labeled free-solution electrophoresis (ELFSE). A
coarse-grained molecular dynamics simulation model, using full electrostatic
interactions and a mesoscopic Lattice Boltzmann fluid to account for
hydrodynamic interactions, is used to characterize the drag coefficients of
different label types: linear and branched polymeric labels, as well as
transiently bound micelles.
It is specifically shown that the label's drag coefficient is determined by
its hydrodynamic size, and that the drag per label monomer is largest for
linear labels. However, the addition of side chains to a linear label offers
the possibility to increase the hydrodynamic size, and therefore the label
efficiency, without having to increase the linear length of the label, thereby
simplifying synthesis. The third class of labels investigated, transiently
bound micelles, seems very promising for the usage in ELFSE, as they provide a
significant higher hydrodynamic drag than the other label types.
The results are compared to theoretical predictions, and we investigate how
the efficiency of the ELFSE method can be improved by using smartly designed
drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule
- …