4,970 research outputs found

    Flight telerobot mechanism design: Problems and challenges

    Get PDF
    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator

    Divergences in QED on a Graph

    Full text link
    We consider a model of quantum electrodynamics (QED) on a graph. The one-loop divergences in the model are investigated by use of the background field method.Comment: 14 pages, no figures, RevTeX4. References and typos adde

    Use of graphics in decision aids for telerobotic control: (Parts 5-8 of an 8-part MIT progress report)

    Get PDF
    Four separate projects recently completed or in progress at the MIT Man-Machine Systems Laboratory are summarized. They are: a decision aid for retrieving a tumbling satellite in space; kinematic control and graphic display of redundant teleoperators; real time terrain/object generation: a quad-tree approach; and two dimensional control for three dimensional obstacle avoidance

    Student Selection Criteria in Undergraduate Leadership Education Programs

    Get PDF
    Citizens expect and deserve effective leadership in both the public and private sectors. In today’s 24/7 information access society, high profile leaders have become a source of constant scrutiny by citizens and the media demanding results and integrity on par with the enormous salaries and fringe benefits these individuals receive

    Spatiotemporal Mapping of Photocurrent in a Monolayer Semiconductor Using a Diamond Quantum Sensor

    Full text link
    The detection of photocurrents is central to understanding and harnessing the interaction of light with matter. Although widely used, transport-based detection averages over spatial distributions and can suffer from low photocarrier collection efficiency. Here, we introduce a contact-free method to spatially resolve local photocurrent densities using a proximal quantum magnetometer. We interface monolayer MoS2 with a near-surface ensemble of nitrogen-vacancy centers in diamond and map the generated photothermal current distribution through its magnetic field profile. By synchronizing the photoexcitation with dynamical decoupling of the sensor spin, we extend the sensor's quantum coherence and achieve sensitivities to alternating current densities as small as 20 nA per micron. Our spatiotemporal measurements reveal that the photocurrent circulates as vortices, manifesting the Nernst effect, and rises with a timescale indicative of the system's thermal properties. Our method establishes an unprecedented probe for optoelectronic phenomena, ideally suited to the emerging class of two-dimensional materials, and stimulates applications towards large-area photodetectors and stick-on sources of magnetic fields for quantum control.Comment: 19 pages, 4 figure

    Solitons in the one-dimensional forest fire model

    Full text link
    Fires in the one-dimensional Bak-Chen-Tang forest fire model propagate as solitons, resembling shocks in Burgers turbulence. The branching of solitons, creating new fires, is balanced by the pair-wise annihilation of oppositely moving solitons. Two distinct, diverging length scales appear in the limit where the growth rate of trees, pp, vanishes. The width of the solitons, ww, diverges as a power law, 1/p1/p, while the average distance between solitons diverges much faster as dexp(π2/12p) d \sim \exp({\pi}^2/12p).Comment: 4 pages with 2 figures include
    corecore