426 research outputs found

    Short anterior correction of the thoracolumbar/lumbar curve in King 1 idiopathic scoliosis: the behaviour of the instrumented and non-instrumented curves and the trunk balance

    Get PDF
    This is a retrospective clinical, radiological and patient outcome assessment of 21 consecutive patients with King 1 idiopathic adolescent scoliosis treated by short anterior selective fusion of the major thoracolumbar/lumbar (TL/L) curve. Three-dimensional changes of both curves, changes in trunk balance and rib hump were evaluated. The minimal follow-up was 24months (max. 83). The Cobb angle of the TL/L curve was 52° (45-67°) with a flexibility of 72% (40-100%). The average length of the main curve was 5 (3-8) segments. An average of 3 (2-4) segments was fused using rigid single rod implants with side-loading screws. The Cobb angle of the thoracic curve was 33° (18-50°) with a flexibility of 69% (29-100%). The thoracic curve in bending was less than 20° in 17 patients, and 20-25° in 4 patients. In the TL/L curve there was an improvement of the Cobb angle of 67%, of the apex vertebral rotation of 51% and of the apex vertebral translation of 74%. The Cobb angle of the thoracic curve improved 29% spontaneously. Shoulder balance improved significantly from an average preoperative imbalance of 14.5-3.1mm at the last follow-up. Seventy-five percent of the patients with preoperative positive shoulder imbalance (higher on the side of the thoracic curve) had levelled shoulders at the last follow-up. C7 offset improved from a preoperative 19.8 (0-40)to 4.8 (0-18) mm at the last follow-up. There were no significant changes in rotation, translation of the thoracic curve and the clinical rib hump. There were no significant changes in thoracic kyphosis or lumbar lordosis. The average score of the SRS-24 questionnaire at the last follow-up was 91 points (max. 120). We conclude that short anterior selective fusion of the TL/L curve in King 1 scoliosis with a thoracic curve bending to 25° or less (Type 5 according to Lenke classification) results in a satisfactory correction and a balanced spine. Short fusions leave enough mobile lumbar segments for the establishment of global spinal balance. A positive shoulder imbalance is not a contraindication for this procedure. Structural interbody grafts are not necessary to maintain lumbar lordosi

    Remarkable Effect on Thermosensitive Behavior Regarding Alkylation at the Amide Position of Poly(N-vinylamide)s

    Get PDF
    N-Vinylamide derivatives, such as N-n-butyl-N-vinylformamides and N-iso-butyl-N-vinylformamides were synthesized and copolymerized with N-vinylformamide and N-methyl-N-vinylacetamide. Lower critical solution temperature values of the copolymers were observed at a wide range of temperatures. Thermosensitive behaviors of copolymers were controlled not only by the induction rate of alkylation of N-vinylamides at the amide position but also by the chemical structures, including hydrogen atom of secondary amide group

    Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life

    Get PDF
    Organic compounds containing silicon are important for a number of applications, from polymers to semiconductors. The catalysts used for creating carbon-silicon bonds, however, often require expensive trace metals or have limited lifetimes. Borrowing from the ability of some metallo-enzymes to catalyze other rare carbene insertion reactions, Kan et al. used heme proteins to form carbon-silicon bonds across a range of conditions and substrates (see the Perspective by Klare and Oestreich). Directed evolution experiments using cytochrome c from Rhodothermus marinus improved the reaction to be 15 times more efficient than industrial catalysts

    Potential Therapeutic Applications of Exosomes in Bone Regenerative Medicine

    Get PDF
    The ability of bone regeneration is relatively robust, which is crucial for fracture healing, but delayed healing and nonunion are still common problems in clinical practice. Fortunately, exciting results have been achieved for regenerative medicine in recent years, especially in the area of stem cell-based treatment, but all these cell-based approaches face challenging problems, including immune rejection. For this reason, exosomes, stem cell-derived small vesicles of endocytic origin, have attracted the attention of many investigators in the field of bone regeneration. One of the attractive features of exosomes is that they are small and can travel between cells and deliver bioactive products, including miRNA, mRNA, proteins, and various other factors, to promote bone regeneration, with undetectable immune rejection. In this chapter, we intend to briefly update the recent progressions, and discuss the potential challenges in the target areas. Hopefully, our discussion would be helpful not only for the clinicians and the researchers in the specific disciplines but also for the general audiences as well

    A GPU-Parallelized Interpolation-Based Fast Multipole Method for the Relativistic Space-Charge Field Calculation

    Full text link
    The fast multipole method (FMM) has received growing attention in the beam physics simulation. In this study, we formulate an interpolation-based FMM for the computation of the relativistic space-charge field. Different to the quasi-electrostatic model, our FMM is formulated in the lab-frame and can be applied without the assistance of the Lorentz transformation. In particular, we derive a modified admissibility condition which can effectively control the interpolation error of the proposed FMM. The algorithms and their GPU parallelization are discussed in detail. A package containing serial and GPU-parallelized solvers is implemented in the Julia programming language. The GPU-parallelized solver can reach a speedup of more than a hundred compared to the execution on a single CPU core.Comment: 30 pages, 10 figure

    OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Language Models

    Full text link
    To enrich language models with domain knowledge is crucial but difficult. Based on the world's largest public academic graph Open Academic Graph (OAG), we pre-train an academic language model, namely OAG-BERT, which integrates massive heterogeneous entities including paper, author, concept, venue, and affiliation. To better endow OAG-BERT with the ability to capture entity information, we develop novel pre-training strategies including heterogeneous entity type embedding, entity-aware 2D positional encoding, and span-aware entity masking. For zero-shot inference, we design a special decoding strategy to allow OAG-BERT to generate entity names from scratch. We evaluate the OAG-BERT on various downstream academic tasks, including NLP benchmarks, zero-shot entity inference, heterogeneous graph link prediction, and author name disambiguation. Results demonstrate the effectiveness of the proposed pre-training approach to both comprehending academic texts and modeling knowledge from heterogeneous entities. OAG-BERT has been deployed to multiple real-world applications, such as reviewer recommendations and paper tagging in the AMiner system. It is also available to the public through the CogDL package
    corecore