68 research outputs found

    Graphene-like quaternary compound SiBCN: a new wide direct band gap semiconductor predicted by a first-principles study

    Full text link
    Due to the lack of two-dimensional silicon-based semiconductors and the fact that most of the components and devices are generated on single-crystal silicon or silicon-based substrates in modern industry, designing two-dimensional silicon-based semiconductors is highly desired. With the combination of a swarm structure search method and density functional theory in this work, a quaternary compound SiBCN with graphene-like structure is found and displays a wide direct band gap as expected. The band gap is of ~2.63 eV which is just between ~2.20 and ~3.39 eV of the highlighted semiconductors SiC and GaN. Notably, the further calculation reveals that SiBCN possesses high carrier mobility with ~5.14x10^3 and ~13.07x10^3 cm^2V^-1s^-1 for electron and hole, respectively. Furthermore, the ab initio molecular dynamics simulations also show that the graphene-like structure of SiBCN can be well kept even at an extremely high temperature of 2000 K. The present work tells that designing ulticomponent silicides may be a practicable way to search for new silicon-based low-dimensional semiconductors which can match well with the previous Si-based substrates

    Interlayer-spin-interaction-driven Sliding Ferroelectricity in a van der Waals Magnetic Heterobilayer

    Full text link
    Sliding ferroelectricity is widely existed in van der Waals (vdW) two-dimensional (2D) multilayers, exhibiting great potential on low-dissipation non-volatile memories. However, in a vdW heterostructure, interlayer sliding usually fails to reverse or distinctly change the electric polarization, which makes the electrical control difficult in practice. Here we propose that in a vdW magnetic system, the interlayer spin interaction could provide an extra degree-of-freedom to remarkably tune the electric polarization. Combining tight-binding model analysis and first-principles calculations, we show that in the CrI3/MnSe2 and other vdW magnetic heterobilayers, the switching of the interlayer magnetic order can greatly change, even reverse the off-plane electronic polarization. Furthermore, interlayer sliding causes a non-volatile switching of the magnetic order and, thus, reverses the electric polarization, suggesting a non-volatile magnetoelectric coupling effect. These findings will significantly advances the development of 2D ferroelectrics and multiferroics for spintronic applications

    Substrate-induced half-metallic property in epitaxial silicene

    Full text link
    For most practical applications in electronic devices, two-dimensional materials should be transferred onto semiconducting or insulating substrates, since they are usually generated on metallic substrates. However, the transfer often leads to wrinkles, damages, contaminations and so on which would destroy the intrinsic properties of samples. Thus, generating two-dimensional materials directly on nonmetallic substrates has been a desirable goal for a long time. Here, via a swarm structure search method and density functional theory, we employed an insulating N-terminated cubic boron nitride(111) surface as a substrate for the generation of silicene. The result shows that the silicene behaves as a ferromagnetic half-metal because of the strong interaction between silicon and surface nitrogen atoms. The magnetic moments are mainly located on surface nitrogen sites without bonding silicon atoms and the value is about 0.12 uB. In spin-up channel, it behaves as a direct band gap semiconductor with a gap of around 1.35 eV, while it exhibits metallic characteristic in spin-down channel, and the half-metallic band gap is about 0.11 eV. Besides, both the magnetic and electronic properties are not sensitive to the external compressive strain. This work maybe open a way for the utility of silicene in spintronic field

    Magnetism in Graphene Systems

    Full text link
    Graphene has attracted a great interest in material science due to its novel electronic structrues. Recently, magnetism discovered in graphene based systems opens the possibility of their spintronics application. This paper provides a comprehensive review on the magnetic behaviors and electronic structures of graphene systems, including 2-dimensional graphene, 1-dimensional graphene nanoribbons, and 0-dimensional graphene nanoclusters. Theoretical research suggests that such metal-free magnetism mainly comes from the localized states or edges states. By applying external electric field, or by chemical modification, we can turn the zigzag nanoribbon systems to half metal, thus obtain a perfect spin filter.Comment: accepted by NAN

    Stabilizing intrinsic defects in SnO2_{2}

    Get PDF
    TThe magnetism and electronic structure of Li-doped SnO2_{2} are investigated using first-principles LDA/LDA+U+U calculations. We find that Li induces magnetism in SnO2_{2} when doped at the Sn site but becomes non-magnetic when doped at the O and interstitial sites. The calculated formation energies show that Li prefers the Sn site as compared with the O site, in agreement with previous experimental works. The interaction of Li with native defects (Sn VSn_\mathrm{Sn} and O VO_\mathrm{O} vacancies) is also studied, and we find that Li not only behaves as a spin polarizer, but also a vacancy stabilizer, i.e. Li significantly reduces the defect formation energies of the native defects and helps the stabilization of magnetic oxygen vacancies. The electronic densities of states reveals that these systems, where the Fermi level touches the conduction (valence) band, are non-magnetic (magnetic).cancies. The electronic densities of states reveal that those systems, where the Fermi levels touch the conduction (valence) band, are non-magnetic (magnetic).Comment: Phys. Rev. B (2013), Accepte

    Atomically thin mononitrides SiN and GeN: new two-dimensional semiconducting materials

    Full text link
    Low-dimensional Si-based semiconductors are unique materials that can both match well with the Si-based electronics and satisfy the demand of miniaturization in modern industry. Owing to the lack of such materials, many researchers put their efforts into this field. In this work, employing a swarm structure search method and density functional theory, we theoretically predict two-dimensional atomically thin mononitrides SiN and GeN, both of which present semiconducting nature. Furthermore study shows that SiN and GeN behave as indirect band gap semiconductors with the gap of 1.75 and 1.20 eV, respectively. The ab initio molecular dynamics calculation tells that both two mononitrides can exist stably even at extremely high temperature of 2000 K. Notably, electron mobilities are evaluated as 0.888x10310^3 cm2V−1s−1cm^2V^{-1}s^{-1} and 0.413x10310^3 cm2V−1s−1cm^2V^{-1}s^{-1} for SiN and GeN, respectively. The present work expands the family of low-dimensional Si-based semiconductors.Comment: arXiv admin note: text overlap with arXiv:1703.0389
    • …
    corecore