43 research outputs found

    Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Get PDF
    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K

    Thermal Property Estimation of Fibrous Insulation: Heat Transfer Modeling and the Continuous Genetic Algorithm

    Get PDF
    Thermal properties of high-temperature fibrous insulation materials were estimated from transient thermal tests using an inverse heat transfer technique. Transient temperature data from an experimental set up was collected and a simple, one-dimensional numerical model was constructed to replicate the temperatures within the test assembly. The Continuous Genetic Algorithm optimization technique in conjunction with a numerical thermal model and transient test data was used to estimate coefficients of a functional representation of the thermal property. The thermal properties, i.e., thermal conductivity and specific heat, of an alumina insulation felt were estimated over the temperature range of 300 K to 1700 K at various constant static pressures in nitrogen gas and compared with published data. The resulting thermal property estimates were within 10% of published values over the entire temperature range at various pressures. The methodology, application, and results are presented

    In-situ technique for checking the calibration of platinum resistance thermometers

    Get PDF
    The applicability of the self-heating technique for checking the calibration of platinum resistance thermometers located inside wind tunnels was investigated. This technique is based on a steady state measurement of resistance increase versus joule heating. This method was found to be undesirable, mainly because of the fluctuations of flow variables during any wind tunnel testing

    Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    Get PDF
    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F

    Evaluation of industrial platinum resistance thermometers

    Get PDF
    The calibration and stability of four surface temperature measuring industrial platinum resistance thermometers for use in the temperature range -120 C to 160 C was investigated. It was found that the calibration formulation of the International Practical Temperature Scale of 1968 provided the most accurate calibration. It was also found that all the resistance thermometers suffered from varying degrees of instability and hysteresis

    Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    Get PDF
    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement

    Off-surface infrared flow visualization

    Get PDF
    A method for visualizing off-surface flows is provided. The method consists of releasing a gas with infrared absorbing and emitting characteristics into a fluid flow and imaging the flow with an infrared imaging system. This method allows for visualization of off-surface fluid flow in-flight. The novelty of this method is found in providing an apparatus for flow visualization which is contained within the aircraft so as not to disrupt the airflow around the aircraft, is effective at various speeds and altitudes, and is longer-lasting than previous methods of flow visualization

    Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Get PDF
    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements

    Measurement of Heat Transfer in Unbonded Silica Fibrous Insulation and Comparison with Theory

    Get PDF
    Effective thermal conductivity of a high porosity unbonded silica fibrous insulation specimen was measured over a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and with large temperature gradients maintained across the sample thickness: hot side temperature range of 360 to 1360 K, with the cold side at room temperature. The measurements were compared with the theoretical solution of combined radiation/conduction heat transfer. The previously developed radiation heat transfer model used in this study is based on a modified diffusion approximation, and uses deterministic parameters that define the composition and morphology of the medium: distributions of fiber size and orientation, fiber volume fractions, and the spectral complex refractive index of the fibers. The close agreement between experimental and theoretical data further verifies the theoretical model over a wide range of temperatures and pressures

    Boundary Layer Transition on X-43A

    Get PDF
    The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis
    corecore