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Thermal properties of high-temperature fibrous insulation materials were estimated from 

transient thermal tests using an inverse heat transfer technique. Transient temperature data 

from an experimental set up was collected and a simple, one-dimensional numerical model 

was constructed to replicate the temperatures within the test assembly. The Continuous 

Genetic Algorithm optimization technique in conjunction with a numerical thermal model and 

transient test data was used to estimate coefficients of a functional representation of the 

thermal property. The thermal properties, i.e., thermal conductivity and specific heat, of an 

alumina insulation felt were estimated over the temperature range of 300 K to 1700 K at 

various constant static pressures in nitrogen gas and compared with published data. The 

resulting thermal property estimates were within 10% of published values over the entire 

temperature range at various pressures. The methodology, application, and results are 

presented.  

 

I. Nomenclature 

 
A = collected temperature vector from experimental test assembly 

𝑏𝑗 = coefficients of the functional representation of specific heat at constant pressure, j ∈ {0,1} 

𝑐𝑗 = coefficients of the functional representation of thermal conductivity, j ∈ {0,1,2,3} 

𝑐𝑝 = specific heat at constant pressure, J/kg/K 

i = time index 

k = thermal conductivity, W/m/K 

m = number of times steps 

𝑟𝑥 = relative temperature difference at location x 

𝑅 = total relative difference 

t = time, sec 

T = measured temperature, K 

∆𝑇𝑗 = absolute temperature difference of numerical solution and experimental data at TC location 𝐴𝑗, j ∈ {2,4,6,8} 

u = analytical temperature, K 

𝑢̂ = numerical model temperature approximation, K 

x = location, m 

z = objective function value 

ρ = density, kg/𝑚3 

 

II. Introduction 

 
Thermal protection systems (TPS) protect space flight vehicles from the large thermal loads experienced during 

entry into a planet’s atmosphere. The thermal properties, thermal conductivity and specific heat, of TPS materials, 

such as light-weight insulations, are essential to reliably predict performance of the system during flight. The purpose 

of this work was to estimate the material thermal properties, thermal conductivity and specific heat, of high-
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temperature fibrous insulation materials based on data from transient thermal tests in conjunction with the Continuous 

Genetic Algorithm (CGA) optimization technique.  

Over the years, many techniques have been investigated to estimate the thermal properties of high-porosity, low-

density thermal insulation materials. Standard measurement techniques include steady-state methods to estimate 

thermal conductivity [1, 2, 3] and a standard method for specific heat [4]. The steady-state techniques require 

significant test time to achieve the steady-state conditions needed to yield accurate results. Other techniques include 

optimization methods that have been used in conjunction with experimental test data and a numerical heat transfer 

model to estimate thermal properties. Common optimization techniques include gradient based, statistical, and genetic 

algorithm (GA) methods. A commonly used gradient based technique is the conjugate gradient method as used by 

Alifanov and Mikhailov to solve an inverse heat transfer problem [5]. A Gauss minimization method, which does 

require the computation of gradients, was used by Scott and Beck [6] with transient temperature data to estimate 

thermal properties of composite materials. Williams and Curry [7] applied a least squares technique, which does not 

require the calculation of gradients, to transient experimental data to estimate the thermal properties of fibrous 

insulation materials. GA methods have been applied to heat transfer problems such as the optimization of experimental 

design, estimation of surface heat fluxes, and estimation of thermal properties. Many of the applications in the 

literature are summarized by Gosselin et al. [8]. The advantages of GAs over gradient based methods include no need 

to compute the gradient of the objective function, the algorithms are likely not to converge to a local minima, and the 

solution is less sensitive to the initial guess [8]. Thermal properties have been estimated using GAs in combination 

with transient and steady-state experiments. Daryabeigi applied a GA with steady-state temperature data to predict 

specific extinction coefficients needed for effective radiant thermal conductivity [3]. The use of transient temperature 

data with GA has been developed for estimating thermal properties and used in other applications such as complex 

aerospace structures [9, 10]. 

In the work presented, thermal properties of alumina paper (APA) fibrous insulation were estimated using transient 

temperature data and the CGA. A continuous algorithm was chosen as the values estimated are floating point numbers. 

First, temperature data was collected through thermal vacuum chamber tests of the insulation material. Then, a finite 

difference numerical model was developed to predict the heat transfer through the materials in the test setup. The 

CGA was used to determine a functional representation of the thermal properties by minimizing the difference between 

measured and numerical model predicted temperatures at various through-thickness locations in the insulation. The 

algorithm searched the parameter space for coefficients of a functional representation of the thermal property, that 

when used in the numerical model minimizes the difference between the experimental temperature data and the 

numerical model values. In high porosity insulation, typically larger than 90 percent, the thermal conductivity is a 

function of the environmental pressure and gaseous medium in addition to the temperature [3]. Therefore the method 

was applied to transient temperature data at various pressures. The results of estimating the thermal properties of APA 

over the temperature range of 300 K to 1700 K at constant static pressures of 13.33 kPa, 1.33 kPa, and 13.33 Pa in 

nitrogen gas are compared to published data [3,11] and discussed. 

 

III. Thermal Testing 
 

Temperature data was collected from a transient thermal testing facility located at NASA Langley Research 

Center in Hampton, Virginia. The test assembly, shown in Fig. 1, was contained in a thermal vacuum chamber to 

allow control of the pressure during testing. The graphite heater was used to control the temperature on the top surface 

of the test assembly. The major components of the test assembly were 305mm by 305mm wide and were surrounded 

by rigid insulation boards to minimize lateral heat losses. 
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Figure 1. The graphite heater and test assembly shown in thermal vacuum chamber. 

Components of the test assembly are shown in Fig. 2. A 4.3 mm thick composite plate made of Advanced Carbon-

Carbon 6 (ACC-6) was placed below the heater to evenly distribute the heat into the sample. There were eight surface 

mounted thermocouples (TCs) installed on the ACC-6 plate, four on the top and four on the bottom.  Ten layers of the 

fibrous insulation, APA, with an effective thickness of 12.7 mm were placed below the ACC-6 plate. Four TCs were 

placed within the APA layers at depths of 2.54 mm, 5.08 mm, 7.62 mm, and 10.16 mm below the ACC-6 plate. A 2.5 

mm thick titanium (Ti) plate was placed below the APA layers with eight TCs spot welded on the bottom of the plate. 

There was a 25.4 mm thick air gap below the Ti plate, then a 50.8mm thick aluminum plate that acted as a heat sink. 

More details about the test assembly are given in [12]. The experiments were conducted at constant static pressures 

of 13.33 kPa, 1.33 kPa, and 13.33 Pa in nitrogen gas and temperature data was collected at 1 Hz. 

 

 

 

 
 

Figure 2. Diagram of test assembly (not to scale) and components. 

Graphite Heater 

Test Assembly 
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IV. Thermal Modeling  
 

The temperatures within the experimental apparatus were estimated by a numerical solution of the one-

dimensional heat conduction partial differential equation subject to the boundary and initial conditions defined as 

 
𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) =  𝜌𝑐𝑝(𝑢)

𝜕𝑢

𝜕𝑡
, 

 
𝑢(𝑥, 0) = 𝑓(𝑥), 
𝑢(0, 𝑡) = 𝑔(𝑡), 
𝑢(𝐿, 𝑡) = ℎ(𝑡), 

 
0 <  𝑥 <  𝐿 

 
0 ≤  𝑥 ≤  𝐿 
0 <  𝑡 
0 <  𝑡. 

 

   
 
 

(1) 

An energy balance method was used to construct a finite-difference approximation of the temperatures within the 

apparatus. The Crank-Nicolson scheme was used for time marching [14], and the resulting tridiagonal systems of 

equations at each time step were solved using the Thomas Algorithm [15]. The analytical temperature solution, u, was 

approximated by the finite-difference method, 𝑢̂, for spatial location x at time t. The domain modeled was from the 

bottom of the ACC-6 plate, x=0, to the bottom of the Ti plate, x = L, with L = 15.24 as shown in Fig. 3. Certain nodes 

correspond to TC locations within the test assembly. The TC locations within the APA are referenced as 𝐴2, 𝐴4, 𝐴6, 

and 𝐴8; where the subscript denotes the location with respect to felt layer number measured from the bottom layer. 

For example, temperature data collected from location 𝐴4 was on top of the fourth layer of APA when counting from 

the bottom layer. 

 

 
 

 
Figure 3. Diagram of test assembly components (not to scale) and numerical model domain with nodal and 

TC locations. 
 

Experimental temperature data were used as the initial condition and Dirichlet boundary conditions. The initial 

condition, f(x), was interpolated from the initial temperature data throughout the domain. The hot side boundary 

condition, g(t) at node 1 in Fig. 3, was an average of two center TCs from the bottom of the ACC-6 plate. The other 

central TCs on the plate were not included in the average as they occasionally malfunctioned. The cold side boundary 

condition, h(t) at node 12 in Fig. 3, was an average of four central TCs on the bottom of the Ti plate. A time step of 

one second was used to match the experimental data acquisition rate.  

a 

b 

x = L 

x = 0 
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A grid convergence study was performed to determine the appropriate number of nodes in the model for accuracy 

and efficiency. The 12-node model, 𝑢̂1, had a node at each material interface, shown in Fig. 3. A 22-node model, 𝑢̂2, 

was generated from the 12-node model by adding a node in the center of each layer of APA. Each model was solved 

with the initial and boundary conditions from the experimental test data. A cubic fit to published data was used as the 

thermal conductivity, k, of APA [3]. An exponential fit to published data was used as the specific heat, 𝑐𝑝, of APA 

[11]. The thermal properties for the Ti plate were interpolated functions from test data produced by a commercial 

thermal property measurement laboratory [13]. The temperature results from each model were compared for the 

common nodal locations using an absolute relative difference, 𝑟𝑥, defined at location x as 

 

𝑟𝑥(𝑢̂1, 𝑢̂2) =  
|𝑢1(𝑥)− 𝑢2(𝑥)|

𝑢2(𝑥)
 .     (2) 

 

The results for the four locations corresponding to the APA TCs are shown in Fig. 4.  

 

 
 

Figure 4. Absolute relative difference between the 12 node model and 22 node model at four locations 

throughout the domain. 

 

The maximum relative difference of the four TC locations was less than 0.25%. The total relative difference, defined 

as  

 

𝑅 = ∑ 𝑟𝑥𝑖

10
𝑖=1  ,      (3) 

 

was calculated at each time step. The results are shown in Fig. 5. The total relative difference over all 10 common 

nodal locations for each time step was below 1%. Thus, adding nodes between material interfaces did not significantly 

improve the solution accuracy and increased the computation time by a factor of four. Therefore the 12-node model 

was used in the estimation of the thermal properties. 

 

𝑟𝑥 
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Figure 5. Total absolute relative difference for all 10 common nodal locations. 

 

V. Thermal Property Estimation 
 

The inverse heat transfer problem of estimating thermal material properties typically involves minimizing the 

difference between measured and computed temperatures. Common optimization techniques used to estimate thermal 

properties include gradient descent, conjugate gradient, and GA. One possible advantage of GA over other 

optimization techniques is the ability to locate the global minimum of an objective function that has many local 

minima. In this work, the CGA optimization technique was chosen to estimate thermal conductivity and specific heat  

as functions of temperature. The parameters needed are floating point numbers, therefore a continuous algorithm was 

used instead of a binary algorithm. The goal was to determine the coefficients of the functional representation of the 

thermal properties that minimize the difference between the measured and predicted temperature values at a single 

location within the APA. The functional representation of thermal conductivity for the highly porous APA was 

assumed to be a third order polynomial function of temperature [3] 

 

 𝑘(𝑢) =  𝑐0 + 𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3, (4) 

 

which is an effective thermal conductivity that combines contributions of various modes of heat transfer in fibrous 

insulation (gas conduction, solid conduction, and radiation). The coefficients 𝑐0, 𝑐1, 𝑐2, and 𝑐3 were assumed to be 

within the specific intervals 

 

𝑐0  ∈  [−10−2, 10−2] 
𝑐1  ∈  [−10−3, 10−3] 
𝑐2  ∈  [−10−6, 10−6] 
𝑐3  ∈  [−10−10, 10−10]. 

 

The functional representation of specific heat for APA was assumed to be a bounded exponential [11] defined as 

 

𝑐𝑝(𝑢) = 𝑏0 (1 −
1

𝑒𝑏1𝑢) ,     (5) 

 

where 𝑏0 is the upper bound and 𝑏1is the growth rate. The coefficients were assumed to be in defined intervals based 

on prior knowledge of specific heat values for various fibrous insulations [11] 

 

𝑏0  ∈  [800,1400] 
𝑏1  ∈  [0, 10−2]. 

 

The coefficients are estimated by searching the parameter space for the set that best minimizes the objective function, 

z, given by 

 

R 
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 𝑧(𝒖̂) =  ∑ (
𝐴(𝑖)−𝑢(𝑖)

𝐴(𝑖)
)

2
𝑚
𝑖=1 , (6) 

 

where A is a vector of measured temperatures from one TC location within the APA (𝐴2, 𝐴4, 𝐴6, or 𝐴8), 𝒖̂ is a vector 

of predicted temperatures at the corresponding nodal location within the numerical model, and m is the number of 

time steps. 

The coefficient space is searched using the CGA to find the set of coefficients that, when used as the coefficients 

of the functional representation of the thermal property in the numerical model, minimizes Eq. 6. CGA has many 

forms and the details can be found in [16]. The procedure used in this work is summarized in Fig. 6. More details on 

the application of CGA to the estimation of thermal properties can be found in [17]. 

 

 
 

 
CGA begins by constructing the initial population containing sets of coefficients for the functional representation 

of the thermal property. The CGA samples a uniform distribution defined on the intervals given for each coefficient 

to construct the initial coefficient sets. The sets are then used individually as the coefficients of the functional 

representation for the thermal property of APA in the numerical model. The objective function, Eq. 6, is evaluated 

using the predicted temperatures for each coefficient set. The resulting z-values from each set of coefficients are sorted 

from smallest to largest, creating a list with the most successful coefficient sets at the top and the least successful on 

the bottom. The algorithm then selects the top 50% of the population and randomly pairs sets together to create new 

coefficient sets by performing single point crossover as shown in Fig. 7. A single dividing point is chosen at random 

and the coefficients to the right of the point are swapped. 

 

 

Figure 6.  The CGA for estimation of thermal properties 
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Figure 7. Example of single point crossover. 

 

The new sets of coefficients are combined with the original top 50% of the population to create the new population. 

Then, a percentage of the new population is mutated to add variety to the possible solutions. The mutations are 

performed by randomly selecting a percentage of individual coefficients and replacing each coefficient with a value 

within the given intervals. The mutations allow the algorithm to search in other areas of the parameter space and shift 

out of possible local minima. The process continues until one of two stopping criteria are met. The algorithm 

terminates if the maximum number of iterations has been met or if the z-value is below the specified threshold. If 

neither condition is met, the algorithm continues on for another iteration by evaluating the model and objective 

function for the new population. The result is a set of coefficients that minimize the objective function within the 

allotted number of iterations. 

 

VI. Results for Thermal Property Estimation 
 

The thermal properties of APA were estimated using experimental temperature data, the numerical model 

constructed to estimate the temperatures within the experimental apparatus, and the CGA optimization technique. The 

algorithm searched the parameter space for the coefficients of the functional representation of the thermal property 

that minimize the difference between the experimental data and numerical approximation at one particular TC 

location. The thermal properties were estimated for each TC location individually to determine the depth that provides 

the most accurate estimates compared to the published values [3]. Thermal conductivity and specific heat were 

estimated independently. When k was approximated, cp was assumed to be known and modeled as a bounded 

exponential fit to theoretical data for alumina [11]. When cp was estimated, k was assumed to be known and modeled 

as a cubic fit to published data [3]. The method was applied to experimental data at 13.3 kPa, 1.33 kPa, and 13.3 Pa 

to determine the variation of thermal conductivity with pressure. The temperature profile for each test has multiple 

ramps and dwells as the tests were originally performed to estimate properties of the ACC-6 plate from the quasi-

steady-state portions of the data. The existing test data was used to evaluate the methodology discussed when applied 

to APA. 

A temperature profile, table, and graph of thermal property results corresponding to the estimated coefficients are 

given for each set of results at the specified pressure. In the temperature profiles presented, the top black line was an 

average of the two center TCs on the bottom of the ACC-6 plate, and the bottom gray line was an average of the four 

center TCs on the Ti plate. The specified temperatures were used as the hot and cold side boundary conditions, 

respectively. Temperature data at the four TC locations within the insulation are shown in each temperature profile 

with various shape markers to identify the separate locations. The convergence criteria used for the CGA was a 

maximum number of iterations of 300 and a threshold value of 0.01. The algorithm commonly terminated because the 

maximum number of iterations was met. The coefficient ranges were perturbed if any of the solutions were on the 

boundary of their intervals when the maximum number of iterations were met. Thermal conductivity results at each 

location for each test and specific heat results for one test are presented. 

 

A. 13.3 kPa Thermal Conductivity Results 

 

The temperature profile of the test conducted at 13.3 kPa is given in Fig. 8.  The test had a minimum temperature 

of 300 K and a maximum temperature of approximately 1250 K with three ramps and dwells. During the test, TC 𝐴4 

malfunctioned and was not included in the analysis. The thermal conductivity was approximated between 300 K and 

1400 K. 
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Figure 8. Temperature data collected from the experimental apparatus at 13.3 kPa. 
 

The coefficients of the thermal conductivity function in Eq. 4 were estimated for each TC location.  The results 

from each location are given in Table 1, which includes the coefficients and corresponding objective function value. 

TC location 𝐴2, which was farthest away from the heat source, produced the lowest z-value and which corresponded 

to the smallest temperature difference between the computed and collected temperatures at that particular location. 

TC location 𝐴8, which was closest to the heat source, presented the second lowest z-value. 

 

Table 1. Thermal conductivity coefficients and associated objective function values for each TC location 

at 13.3 kPa. 

 

TC Location z 𝑐0 𝑐1 𝑐2 𝑐3 

𝐴8 0.026 5.98 ∙ 10−5 4.99 ∙ 10−5 −8.50 ∙ 10−9 9.92 ∙ 10−12 

𝐴6 0.077 7.31 ∙ 10−8 9.06 ∙ 10−5 −3.73 ∙ 10−11 9.96 ∙ 10−12 

𝐴2 0.023 1.17 ∙ 10−5 1.01 ∙ 10−4 −5.89 ∙ 10−8 8.03 ∙ 10−11 

 

The associated thermal conductivity functions are compared with the published values [3] in Fig. 9. The result 

from the 𝐴2 TC location was the best estimate compared to the published thermal conductivity values. It was not 

expected that the TCs farthest away from the heat source would provide estimates with the smallest percent difference 

compared to the published values. Estimates obtained from TCs closer to the heated surface under predict the thermal 

conductivity. For the solution corresponding to 𝐴2, there was an average relative difference of 7.29% with respect to 

published data over the entire temperature range. Above 800 K, the average relative difference was 2.72%. Note that 

TC location 𝐴8 produced the second smallest z-value but when compared to the published values, that location had 

the largest difference. The results indicate that small z-values do not imply close approximations compared to the 

published values. The issue is discussed in section VII. 
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Figure 9. Thermal conductivity estimates from each TC location compared with published values at  

13.3 kPa. 

 

B. 1.33 kPa Thermal Conductivity Results 

 

The 1.33 kPa temperature profile is given in Fig. 10. For this test, the temperature of the ACC-6 plate begins at 

approximately 600 K. The data acquisition system malfunctioned and temperature data was not collected until after 

the thermal load was initiated. The temperature data recorded after the malfunction is presented and used for the 

analysis. The test had a minimum temperature of 400 K and a maximum temperature of approximately 1550 K and 

consisted of five ramps and dwells.  

  

 
 

Figure 10. Temperature data collected from experimental apparatus at 1.33 kPa. 

 

The estimated coefficients for the thermal conductivity functional representation, Eq. 4, with the lowest z-value at 

each TC location are provided in Table 2. TC location 𝐴2 produced the lowest z-value. The other TC locations 𝐴8, 𝐴6, 

and 𝐴4 produced increasingly larger z-values, respectively.  
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Table 2. Thermal conductivity coefficients and associated objective function values for each TC location 

at 1.33 kPa. 

 

TC Location z 𝑐0 𝑐1 𝑐2 𝑐3 

𝐴8 0.067 2.50 ∙ 10−2 1.54 ∙ 10−6 −1.47 ∙ 10−9 1.70 ∙ 10−11 

𝐴6 0.054 3.73 ∙ 10−2 1.93 ∙ 10−7 −2.00 ∙ 10−9 3.51 ∙ 10−11 

𝐴4 0.021 −8.42 ∙ 10−3 1.15 ∙ 10−4 −8.42 ∙ 10−8 7.22 ∙ 10−11 

𝐴2 0.010 6.87 ∙ 10−4 1.00 ∙ 10−4 −9.03 ∙ 10−8 9.68 ∙ 10−11 

 

The estimated thermal conductivity values are compared to the published values [3] in Fig. 11 for 400 K to 1500 

K temperature range. TC location 𝐴2, corresponding to the lowest z-value, provided the best comparison to the 

published values. The average relative difference between the thermal conductivity estimated from the 𝐴2 TC location 

and published values was 5.4% over the entire temperature range.  For temperatures above 800 K, the average relative 

difference was 2.3%. Again, the TC locations closer to the heat source deviated more from the published values. 

 

 
 

Figure 11.  Thermal conductivity estimates from each TC location compared with published values at  

1.33 kPa. 

 

C. 13.33 Pa Thermal Conductivity Results 

 

The temperature profile of the 13.33 Pa test is given in Fig. 12.  The test consisted of six ramps and dwells ranging 

from 300 K to approximately 1750 K. The thermal conductivity was approximated between 300 K and 1700 K. 
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Figure 12. Temperature data collected from experimental apparatus at 13.33 Pa. 

 

 

The algorithm searched for the coefficients of the thermal conductivity in Eq. 4 which minimized the objective 

function at each of the four TC locations, and the results are given in Table 3. TC location 𝐴2 produced the largest z-

value and 𝐴4 produced the lowest z-value. 

 

Table 3. Thermal conductivity coefficients and associated objective function values for each TC location 

at 13.33 Pa. 

 

TC Location z 𝑐0 𝑐1 𝑐2 𝑐3 

𝐴8 0.274 −5.88 ∙ 10−3 2.67 ∙ 10−5 −2.54 ∙ 10−9 3.06 ∙ 10−11 

𝐴6 0.124 −1.89 ∙ 10−3 1.70 ∙ 10−5 −8.52 ∙ 10−9 3.26 ∙ 10−11 

𝐴4 0.067 3.16 ∙ 10−3 4.97 ∙ 10−6 −1.55 ∙ 10−8 6.67 ∙ 10−11 

𝐴2 0.363 5.92 ∙ 10−4 2.60 ∙ 10−5 −5.92 ∙ 10−8 9.83 ∙ 10−11 

 

The associated thermal conductivity results are compared with the published values [3] in Fig. 13 for 300 K to 

1700 K. The 𝐴4 solution gave the smallest percent difference when compared to the published values [3]. The average 

percent difference between the published and estimated values using the 𝐴4 TC location was 9.44% over the entire 

temperature range. Above 800 K, the percent difference was 2.41%. TC location 𝐴2 produced the largest z-value but 

had the second best solution compared to the published values. The TC locations closest to the heat source produced 

the estimates with the largest difference compared to the published values. 
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Figure 13.  Thermal conductivity estimates from each TC location compared with published values at 

13.33 Pa. 

 

Unlike the previous results, TC location 𝐴2 did not give the best solution when compared to the published values. 

However, the 𝐴2 location z-value was extremely large compared to the 𝐴4 z-value. Since the algorithm terminated 

because the maximum number of iterations were reached when estimating the coefficients at the 𝐴2 location, a solution 

with a reduced z-value could result in a better estimate compared to the published data. 

 

D. Specific Heat Results 

 

The algorithm was applied to the 13.3 kPa temperature data discussed in the previous section to estimate specific 

heat. Specific heat does not vary with pressure for fibrous insulation, therefore the technique was only applied to test 

data at one pressure. The test was shorter in length, thus enabling fewer iterations and faster convergence of the 

solution. The resulting coefficients of Eq. 5 that minimized the temperature difference between the experimental data 

and numerical solution at the individual TC locations, Eq. 6, are given with their respective z-values in Table 4. The 

𝐴2 TC location produced the smallest z-value and 𝐴6 produced the largest z-value. 

 

Table 4. Specific heat coefficients and associated objective function values for each TC location at 13.3 kPa. 

 

TC Location z 𝑏0 𝑏1 

𝐴8 0.123 6.06 ∙ 103 8.09 ∙ 10−4 

𝐴6 0.211 1.81 ∙ 103 1.81 ∙ 10−3 

𝐴2 0.021 1.34 ∙ 103 2.81 ∙ 10−3 

 

The specific heat results and published values [11] are compared in Fig. 14. The estimate from TC location 𝐴2 

had an average percent difference of 2.47% from the published values over the entire temperature range. TC location 

𝐴6 had the largest objective function value but was the second best estimate compared to the published values. 
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Figure 14. Specific heat estimates from each TC location compared with published values at 13.3 kPa. 

 

VII. Analysis of Results 

 
In the three sets of thermal conductivity results, the estimated values from the TC locations farthest away from 

the heat source, 𝐴2 or 𝐴4, gave the smallest percent difference from the published values. To better understand why 

the thermal properties were best approximated at the lower TCs, a sensitivity analysis of thermal conductivity with 

respect to location using the numerical model was performed for the 13.3 Pa test. To find the sensitivity of thermal 

conductivity with respect to location, the following partial derivative was approximated 

 

 
𝜕𝑘

𝜕𝑥
=  

𝜕𝑘

𝜕𝑢
∙

𝜕𝑢

𝜕𝑥
≈  (𝑐1 + 2𝑐2𝑢̂(𝑥) + 3𝑐3𝑢̂(𝑥)2) (

𝑢(𝑥+∆𝑥)−𝑢(𝑥)

∆𝑥
). (7) 

 

The partial derivative of thermal conductivity with respect to temperature, 
𝜕𝑘

𝜕𝑢
, was approximated using the functional 

representation of thermal conductivity, Eq. 4. The partial derivative of temperature with respect to location, 
𝜕𝑢

𝜕𝑥
, was 

approximated using a forward difference. The sensitivity of thermal conductivity with respect to location, Eq. 7, is 

shown in Fig. 15 for each TC location. During the initial two ramps of heating, thermal conductivity at the TC closest 

to the heat source, 𝐴8, had the highest sensitivity. For the remaining 3000 seconds of the run, thermal conductivity at 

the TC location farthest away from the heat source had the highest sensitivity. 

 

 
 

Figure 15. Sensitivity of thermal conductivity during experimental run with respect to location for the 

various TC locations. 
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The partial derivative approximations were evaluated using the 13.33 Pa test temperature data and the results of 
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑘

𝜕𝑢
 at the four TC locations are shown in Fig. 16. The thermal gradient through the apparatus increased as time 

increased, resulting in larger 
𝜕𝑢

𝜕𝑥
 values for the locations farther from the heat source. The 

𝜕𝑢

𝜕𝑥
 values are larger than the 

𝜕𝑘

𝜕𝑢
 values, resulting in higher sensitivity at the locations farther from the heat source. Thus, a change in thermal 

conductivity, or coefficients of the functional form, at the locations farthest away from the heat source produced a 

larger change in the estimated temperature within the apparatus, therefore allowing the algorithm to better minimize 

the difference between the model and experimental temperature values. 

 

 
 

Figure 16. 𝝏𝒖̂/𝝏𝒙 and 𝝏𝒌/𝝏𝒖̂ approximations for the TC locations. 

 

A thermal conductivity estimate from a TC location does not take the other locations through the APA into account. 

For example, thermal conductivity results at 13.3 kPa had two close z-values. TC location 𝐴8 produced a z-value of 

0.026 whereas 𝐴2 produced a z-value of 0.023. The two thermal conductivity estimates varied greatly as the algorithm 

produced the results based on the TC location chosen for comparison to the temperature data in the objective function. 

The temperature values at the other TC locations were compared to the numerical model approximations at the 

corresponding locations to assess the impact of using a thermal conductivity estimate from one location. The relative 

temperature difference between the numerical approximation and the experimental data at location j is given by 

 

∆𝑇𝑗 =  
|𝑢𝑗−𝐴𝑗|

𝐴𝑗
 , 𝑗 ∈ {2,4,6,8}.     (8) 

 

Using the 13.33 Pa temperature data, the temperature differences were found by solving for the numerical solution 

using the thermal conductivity estimates from each of the four TC locations and evaluating Eq. 8 at each location. The 

results are shown in Fig. 17. Recall for the 13.33 Pa test, 𝐴4 provided the best results compared to the published values. 

The temperature difference between the experimental data and numerical model at the TC location used to 

approximate the thermal conductivity was lower than the other locations as the algorithm attempted to minimize the 

difference at only that one location. For example, in Fig. 17c, the thermal conductivity estimate from TC location 𝐴6 

was used in the numerical model. The temperature difference between the experimental data and numerical model at 

the 𝐴6 location was lower than the other locations. Shown in Fig. 17d, the temperature difference at the 𝐴8 location 

was low because the 𝐴8 thermal conductivity result was used. However, the temperature differences at the other 

locations were much larger compared to the other results using different thermal conductivity estimates. The overall 

temperature differences between the model and experimental values at all locations were lower when using the thermal 

conductivity solution obtained from the TC location 𝐴4. 

 

 

𝜕𝑢̂

𝜕𝑥
 

𝜕𝑘

𝜕𝑢̂
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(a)                                        (b) 

 
 

(c)                                        (d) 

 

Figure 17. Temperature differences between experimental and numerical model values using thermal 

conductivity estimates from TC location: a) 𝑨𝟐, b) 𝑨𝟒, c) 𝑨𝟔, d) 𝑨𝟖. 

 

VIII. Concluding Remarks 

 
A methodology was developed to provide thermal property estimates of a fibrous insulation over the temperature 

range of 300 K to 1700 K, using transient temperature data. The temperature data was used in combination with a one-

dimensional finite difference numerical model to replicate the heat conduction in the test assembly. The thermal 

property estimates were obtained by solving the inverse heat transfer problem using the CGA optimization technique 

to search the parameter space for coefficients of the functional representation of the thermal property. The algorithm 

used the possible coefficient solutions in the numeral model to estimate the temperatures within the setup. The 

numerical model temperature values at one TC location were then compared to the temperatures at the equivalent 

location within the experimental setup to determine the solution which minimized the objective function. The locations 

farthest away from the heat source provided the smallest percent difference between the estimated and published 

values for the specific temperature profiles used. The estimates were within 10% of known, published values over the 

entire temperature range and were within 3% of known, published values for temperatures larger than 800 K. 

In the future, the methodology will be applied to other fibrous insulation materials with known thermal properties, 

analyzed in the same test assembly for further validation. The method will also be used to predict both thermal 

properties, i.e., thermal conductivity and specific heat, simultaneously. Of interest is evaluating the methodology for 

the test data with varied ramp style and rate as the temperature profile of the experimental transient data used had 

particular ramps and dwells. A change in the temperature profile is speculated to have an effect on the TC location 

that produces the best thermal property estimates compared to published values. Also of interest is the use of an 

objective function that incorporates the temperatures differences between model and data at all TC locations. Other 

changes such as a different objective function and manipulations to the search algorithm are desired to further study 

the methodology.  
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