252 research outputs found

    Cancer metabolism at a glance

    Get PDF
    A defining hallmark of cancer is uncontrolled cell proliferation. This is initiated once cells have accumulated alterations in signaling pathways that control metabolism and proliferation, wherein the metabolic alterations provide the energetic and anabolic demands of enhanced cell proliferation. How these metabolic requirements are satisfied depends, in part, on the tumor microenvironment, which determines the availability of nutrients and oxygen. In this Cell Science at a Glance paper and the accompanying poster, we summarize our current understanding of cancer metabolism, emphasizing pathways of nutrient utilization and metabolism that either appear or have been proven essential for cancer cells. We also review how this knowledge has contributed to the development of anticancer therapies that target cancer metabolism

    Intraspecific variability of popcorn S7 lines for phosphorus efficiency in the soil.

    Get PDF
    The expansion of agriculture, coupled with the need for sustainable cropping, is one of the greatest challenges of the scientific community working on the generation of new cultivars adapted to abiotic stress conditions. The aim of this study was to evaluate the variability of popcorn lines as to responsiveness and efficiency in phosphorus use, as a first step towards the implementation of a breeding program interested in the practice of sustainable agriculture. Twenty-five popcorn lines were evaluated in two locations with different phosphorus levels in the soil, using a randomized block design. The following traits were measured: plant height, ear height, female flowering date, male flowering date, male-female flowering interval, ear diameter, ear length, 100-grain weight, grain yield, popping expansion, and expanded popcorn volume per hectare. A combined analysis of variance and test of means were performed, and the lines were classified as to their phosphorus use efficiency, according to their production performance in the different environments. The genetic diversity between the lines was estimated by Tocher?s and UPGMA clustering methods, using generalized Mahalanobis distance. Lines L59, P7, P2, P3, P4, P8, P10, P9, L66, L70, L69, and P5 were efficient and responsive, whereas lines L75, L80, L61, L77, L63, L65, P1, L54, L53, L88, and L71 were inefficient and nonresponsive. Genetic variability was greater in the environments with low phosphorus in the soil, suggesting that the selection pressure exerted in the stressing environment is a decisive factor to obtain a higher expression of variability

    Pair contact process with a particle source

    Full text link
    We study the phase diagram and critical behavior of the one-dimensional pair contact process (PCP) with a particle source using cluster approximations and extensive simulations. The source creates isolated particles only, not pairs, and so couples not to the order parameter (the pair density) but to a non-ordering field, whose state influences the evolution of the order parameter. While the critical point p_c shows a singular dependence on the source intensity, the critical exponents appear to be unaffected by the presence of the source, except possibly for a small change in beta. In the course of our study we obtain high-precision values for the critical exponents of the standard PCP, confirming directed-percolation-like scaling.Comment: 15 pages, 9 figure

    Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress

    Get PDF
    A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment

    Genetic effects on the efficiency and responsiveness to phosphorus use in popcorn as estimated by diallel analysis.

    Get PDF
    Agricultural expansion and the need for sustainable cultivation are challenges faced by researchers involved in the generation of new cultivars that can adapt to abiotic stress. Knowledge of the genetic effects of characteristics related to efficiency and responsiveness to phosphorus use must be considered when implementing methods to obtain better genotypes. The aim of this study was to characterize and select popcorn hybrids based on their efficiency and responsiveness to phosphorus use, and estimate their combining abilities and genetic effects via diallel analysis to implement improvement programs for sustainable agriculture. Eight contrasting inbred lines were used to obtain simple hybrids for diallel analysis. Twenty-eight diallelic hybrids plus the popcorn parental lines were evaluated at two different sites under two contrasting environments for soil phosphorus availability (6×6 lattice design). Grain yield, popping expansion, and volume of expanded popcorn per hectare were measured. A combined analysis of variance and a test of means were performed. The classification and utilization of the phosphorus use efficiency index, according to the grain yield performance of the hybrids under contrasting environments, was considered. Through model 2 of the Griffing?s diallel analysis method, the general and specific combining abilities were estimated, along with their environmental interactions. The best strategy to obtain genotypes that are efficient and responsive to phosphorus involves exploring popcorn hybrids using genitors that result in the accumulation of additive genes that promote popping expansion. Hybrids P7×L80, P7×L59, P7×L76, and P6×L80 presented promising results and may be evaluated as cultivation options in phosphorus-deficient soils

    Activated Random Walkers: Facts, Conjectures and Challenges

    Get PDF
    We study a particle system with hopping (random walk) dynamics on the integer lattice Zd\mathbb Z^d. The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0\lambda > 0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ\zeta and the sleeping rate λ\lambda. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ\lambda) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (β=1\beta = 1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    A Fluorescence Reporter Model Defines “Tip-DCs” as the Cellular Source of Interferon β in Murine Listeriosis

    Get PDF
    Production of type I interferons, consisting mainly of multiple IFNα subtypes and IFNβ, represents an essential part of the innate immune defense against invading pathogens. While in most situations, namely viral infections, this class of cytokines is indispensable for host survival they mediate a detrimental effect during infection with L. monocytogenes by rendering macrophages insensitive towards IFNγ signalling which leads to a lethal bacterial pathology in mice. Due to a lack of suitable analytic tools the precise identity of the cell population responsible for type I IFN production remains ill-defined and so far these cells have been described to be macrophages. As in general IFNβ is the first type I interferon to be produced, we took advantage of an IFNβ fluorescence reporter-knockin mouse model in which YFP is expressed from a bicistronic mRNA linked by an IRES to the endogenous ifnb mRNA to assess the IFNβ production on a single cell level in situ. Our results showed highest frequencies and absolute numbers of IFNβ+ cells in the spleen 24 h after infection with L. monocytogenes where they were located predominately in the white pulp within the foci of infection. Detailed FACS surface marker analyses, intracellular cytokine stainings and T cell proliferation assays revealed that the IFNβ+ cells were a phenotypically and functionally further specialized subpopulation of TNF and iNOS producing DCs (Tip-DCs) which are known to be essential for the early containment of L. monocytogenes infection. We proved that the IFNβ+ cells exhibited the hallmark characteristics of Tip-DCs as they produced iNOS and TNF and possessed T cell priming abilities. These results point to a yet unappreciated ambiguous role for a multi-effector, IFNβ producing subpopulation of Tip-DCs in controlling the balance between containment of L. monocytogenes infection and effects detrimental to the host driven by IFNβ
    corecore