18 research outputs found

    Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy

    Full text link
    ObjectiveMonoallelic de novo gain‐of‐function variants in the voltage‐gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss‐of‐function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss‐of‐function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild‐type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A.MethodsWe identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells.ResultsWe identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss‐of‐function, and one allele with altered biophysical properties consistent with partial loss‐of‐function.SignificanceThese studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/1/epi16371_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/2/epi16371.pd

    PEDIA: prioritization of exome data by image analysis.

    Get PDF
    PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis

    Functional organization of the deep cerebellar nuclei of the rat - investigations of physiology, morphology and glycinercig synaptic transmission of deep cerebellar nuclei neurons

    No full text
    Informationen aus dem Kleinhirnkortex erreichen nur unter Vermittlung der Kleinhirnkerne die nachgeschalteten Zentren des Hirnstammes, des Mittelhirns und des Thalamus. Obwohl die efferenten und afferenten Verbindungen der Kerne wohlbekannt sind, bestehen nur wenige Untersuchungen, die sich mit der KonnektivitĂ€t der Kleinhirnkernneurone selbst befassen. Üblicherweise unterscheidet man in den Kleinhirnkernen, mit Blick auf die verwendeten Neurotransmitter und Projektionsziele, drei unterschiedliche Klassen von Neuronen. Ob sich diese anatomisch definierten Neuronentypen auch hinsichtlich ihrer elektrischen Membraneigenschaften unterscheiden, ist bisher nur unzureichend bekannt und war Gegenstand der vorliegenden Arbeit. Den zweiten Schwerpunkt dieser Arbeit bildeten elektrophysiologische Untersuchungen zur Rolle von Glycin in der inhibitorischen synaptischen Transmission der Kleinhirnkerne. Zur Untersuchung dieser Fragestellungen wurden Kleinhirnkernneurone unterschiedlichen Alters und GrĂ¶ĂŸe mittels Patch Clamp- Technik in der Ganzzellkonfiguration unter Sichtkontrolle abgeleitet. FĂŒr die Bestimmung des Neurotransmittergehaltes der zuvor charakterisierten Neurone kamen immunhistochemische Methoden zur Anwendung. Um zu garantieren, dass von Neuronen unterschiedlicher GrĂ¶ĂŸe abgeleitet wurde, wurden die Neurone vor der Ableitung gezeichnet und ihre SomagrĂ¶ĂŸe ermittelt. Die untersuchten Kleinhirnkernneurone unterschieden sich elektrophysiologisch hinsichtlich des Vorhandenseins bzw. Nichtvorhanden-seins von Plateaupotentialen, dem Ausmaß ihrer Reboundantwort nach Beendigung hyperpolarisierender Strompulse sowie hinsichtlich der Form ihrer Aktionspotentiale und Nachhyperpolarisationen. Die genauere Analyse der elektrophysiologischen und morphologischen Eigenschaften der Neurone erlaubte in Anlehnung an Czubayko et al. (2001) die Differenzierung der Gesamtpopulation in sogenannte Typ I- oder Typ II- Neurone. ZusĂ€tzlich zu dieser Einteilung fanden sich Neurone mit ĂŒberlappenden Eigenschaften, die als Mix- Neurone bezeichnet wurden. Obwohl diese Zellen Plateaupotentiale generierten waren sie hinsichtlich ihrer Kinetik eher mit den Typ II- Neuronen vergleichbar. Die Clusteranalyse der elektrophysiologischen Eigenschaften der Kleinhirnkernneurone unterstĂŒtzte die Hypothese einer möglichen weiteren Unterteilung der zyklisch feuernden Neurone in Typ I- und Mix- Neurone. Aufgrund der geringen GrĂ¶ĂŸe, ihrer Seltenheit und der starken Verletzbarkeit der Typ II- Neurone, was im Zusammenspiel mit der erhöhten Gefahr, die Neurone mit der Elektrode aus dem Hirnschnitt zu ziehen, auf einen schmalen Dendritenbaum hinweisen könnte, könnte es sich bei den Typ II- Neuronen um Interneurone der Kleinhirnkerne handeln. Die morphologisch heterogene Gruppe der Typ I- und Mix- Neurone könnte sowohl glutamaterge als auch GABAerge Projektionsneurone umfassen. Leider lieferte die anschließende immunhistochemische FĂ€rbung keinen weiteren Hinweis ĂŒber die Richtigkeit der Hypothese, dass es sich bei den elektrophysiologisch ermittelten Gruppen tatsĂ€chlich um unterschiedliche Neuronenklassen handeln könnte. Die Untersuchung der Funktion von Glycin als synaptischer Neurotransmitter in den Kleinhirnkernen zeigte, dass glycinerge Synapsen in neonatalen und jung-adulten Neuronen vorhanden und funktional sind, wĂ€hrend sie wĂ€hrend des jugendlichen Alters (P13 bis P17) eine vorĂŒbergehende, nicht- funktionale, Phase durchlaufen. Zum Badmedium beigefĂŒgtes Glycin induzierte in Neuronen jeden Alters und GrĂ¶ĂŸe einen strychninsensitiven, einwĂ€rtsgerichteten Strom, was auf das Vorhandensein funktionaler inhibitorischer Glycinrezeptoren wĂ€hrend der gesamten untersuchten Altersphase hindeutet. Strychninsensitive IPSCs waren jedoch nur in neonatalen und jung- adulten Neuronen nachweisbar und auch nur in Neuronen mit großen Somata. Die wahrscheinlichste Quelle dieser IPSCs sind die glycinergen Neurone der Kleinhirnkerne, bei denen es sich vermutlich um Interneurone (und hierbei möglicherweise um die zuvor gezeigten Typ II-Neurone), handelt. Der fehlende Nachweis glycinerger Synapsen kleiner und mittelgroßer Neurone könnte auf eine extrasynaptische Lokalisation der GlyR hindeuten. Das Fehlen strychninsensitiver IPSCs in Kleinhirnkernneuronen jugendlichen Alters spricht fĂŒr das Vorliegen nicht- funktionaler, „stiller“, Synapsen. Eine Analyse der IPSC- Kinetik sowie der Blockierbarkeit der Glycinrezeptoren durch Pikrotoxin lieferte Hinweise fĂŒr einen Wechsel der α- Untereinheit des Glycinrezeptors wĂ€hrend der Phase stiller Synapsen im jugendlichen Alter. Diese nicht- funktionale Phase glycinerger Synapsen könnte eine Folge der Umorganisation der postsynaptischen Region wĂ€hrend der Ausreifung von Glycinrezeptoren sein. Die Ergebnisse dieser Studie tragen zum VerstĂ€ndnis der funktionellen Bedeutung einer glycinergen Neurotransmission in den Kleinhirnkernen bei, eine Bedeutung, die bislang unterschĂ€tzt wurde. Glycin könnte unter physiologischen und pathologischen Gegebenheiten im sich entwickelnden als auch im ausgereiften Nervensystem eine essentielle Rolle fĂŒr die Aufrechterhaltung der cerebellĂ€ren Funktion spielen. DarĂŒber hinaus geben diese Ergebnisse erstmalig einen Hinweis fĂŒr das Vorhandensein stiller Synapsen im sich entwickelnden glycinergen System und veranlassen zu der Vermutung, dass diese Synapsen nicht nur eine wichtige Rolle in der Feinabstimmung des neuronalen Netzwerkes der Kleinhirnkerne sondern darĂŒber hinaus auch in anderen Hirnarealen spielen könnten.The neurons of the deep cerebellar nuclei (DCN) comprise the main output stage of the cerebellum. They receive GABAergic inhibitory drive from cortical Purkinje cells and glutamatergic excitatory input from climbing and mossy fibre collaterals (Shinoda et al., 1993, Teune et al., 1998, Czubayko et al., 2001). As a consequence, the output of the neural computation, performed in the cerebellum, is reflected in the firing patterns of the DCN neurons, which then are translated into different motor functions through projections to a variety of premotor centers, including the thalamus, red nucleus and superior colliculus, and the inferior olive (Teune et al., 1998, Aizenman and Linden, 1999). The cerebellar output is generated as a result of synaptic interaction in the DCN and by the electrical membrane properties of these neurons themselves. Against this background, the importance of bringing light into the neural computations that are performed by the DCN neurons can be easily concluded. Studies of the afferent and efferent connections of the DCN have been numerous during the past, (Batini et al., 1992, De Zeeuw et al., 1995, Teune et al., 1998, Pedroarena et al., 2003) but still very little is known about the electrical membrane properties of the DCN neurons themselves. Morphologically, three classes of DCN neurons have been distinguished, based on their different projection targets and content of neurotransmitters (Teune et al., 1998, Schwarz and Schmitz, 1997, Sultan et al., 2001). Despite the extensive knowledge on the anatomical properties of these different types of neurons, it is not known whether the morphologically defined cell types find their correlate in different electrophysiological characteristics and few attempts have been made to correlate electrophysiological and anatomical measures (Czubayko et al., 2001). The present study tries to differentiate functional groups of cells based on their intracellular properties and to relate them to anatomical features. A second focus was set on electrophysiological investigations of the role of glycine in the inhibitory synaptic transmission of the DCN neurons. By means of patch clamp recordings the existence of glycinergic receptors and synapses in DCNs from juvenile and young adult rats (P13 to P23) was investigated. It could be shown that exogenously applied glycine gated in all tested DCNs chloride sensitive currents that could be blocked by nanomolar concentrations of the glycine antagonist, strychnine. These results indicate that DCNs express functional inhibitory glycine receptors throughout the whole explored period. In contrast, glycinergic IPSCs were detected exclusively in DCNs from rats older than P17. Confirming previous experiments it could be shown that all spontaneous IPSCs could be blocked by low doses of GABAA receptor blockers (bicuculline 3”M or gabazine 200 nM). However under conditions of increased spontaneous synaptic activity (by application of 4-aminipyridine, 250 ”M and/or TEA 2.5 mM) IPSCs sensitive to strychnine were detected, but only in recordings from P18 or older rats. Furthermore, application of hypertonic solutions (a procedure that elicit vesicular release), or putative focal stimulation of terminals apposed to DCNs, failed to elicit glycinergic IPSCs in DCNs from rats P13-P17. Since glycinergic synaptic currents can be elicited in neonatal DCNs (Kawa 2003) this data indicates that a functional gap occurs at glycinergic DCN synapses during the juvenile age. These results are suggestive that silent synapses might represent a constitutive state during the postnatal maturation of glycinergic synapses in general and raises the possibility that a number of those remain silent during adulthood constituting a reserve pool

    Clarifying the Role of the Rostral dmPFC/dACC in Fear/Anxiety: Learning, Appraisal or Expression?

    Get PDF
    <div><p>Recent studies have begun to carve out a specific role for the rostral part of the dorsal medial prefrontal cortex (dmPFC) and adjacent dorsal anterior cingulate cortex (dACC) in fear/anxiety. Within a novel general framework of dorsal mPFC/ACC areas subserving the appraisal of threat and concomitant expression of fear responses and ventral mPFC/ACC areas subserving fear regulation, the rostral dmPFC/dACC has been proposed to specifically mediate the conscious, negative appraisal of threat situations including, as an extreme variant, catastrophizing. An alternative explanation that has not been conclusively ruled out yet is that the area is involved in fear learning. We tested two different fear expression paradigms in separate fMRI studies (study 1: instructed fear, study 2: testing of Pavlovian conditioned fear) with independent groups of healthy adult subjects. In both paradigms the absence of reinforcement precluded conditioning. We demonstrate significant BOLD activation of an identical rostral dmPFC/dACC area. In the Pavlovian paradigm (study 2), the area only activated robustly once prior conditioning had finished. Thus, our data argue against a role of the area in fear learning. We further replicate a repeated observation of a dissociation between peripheral-physiological fear responding and rostral dmPFC/dACC activation, strongly suggesting the area does not directly generate fear responses but rather contributes to appraisal processes. Although we succeeded in preventing extinction of conditioned responding in either paradigm, the data do not allow us to definitively exclude an involvement of the area in fear extinction learning. We discuss the broader implications of this finding for our understanding of mPFC/ACC function in fear and in negative emotion more generally.</p> </div

    Areas activated during Instructed and Uninstructed Fear.

    No full text
    <p>Areas activated in the contrasts CS+>CS− and CS−>CS+ at p<sub>uncorr</sub><0.001, k = 10, in Instructed Fear (study 1, IF-Test) and Uninstructed Fear (study 2, UF-Test).</p

    Uninstructed fear (study 2): Rostral dmPFC/dACC activation.

    No full text
    <p>(<b>A</b>) Contrast ‘unpaired CS+>CS−’ at testing (UF-Test run). Display threshold: p<0.001 uncorrected. Activations superimposed on a canonical structural image. (<b>B</b>) Parameter estimates from the peak voxel during all three runs (UF-Cond1, UF-Cond2, UF-Test). Error bars: s.e.m.</p
    corecore