32 research outputs found

    \require{mhchem}Misfit phase \ce{(BiSe)_{1.10}NbSe2} as the origin of superconductivity in nobium-doped bismuth selenide

    Full text link
    \require{mhchem}Topological superconductivity is of great contemporary interest and has been proposed in doped \ce{Bi2Se3} in which electron-donating atoms such as Cu, Sr or Nb have been intercalated into the \ce{Bi2Se3} structure. For \ce{Nb_{x}Bi2Se3}, with Tc∼3 K\text{T}_\text{c} \sim 3 \ \text{K}, it is assumed in the literature that Nb is inserted in the van der Waals gap. However, in this work an alternative origin for the superconductivity in Nb-doped \ce{Bi2Se3} is established. In contrast to previous reports, it is deduced that Nb intercalation in \ce{Bi2Se3} does not take place. Instead, the superconducting behaviour in samples of nominal composition \ce{Nb_{x}Bi2Se3} results from the \ce{(BiSe)_{1.10}NbSe2} misfit phase that is present in the sample as an impurity phase for small xx (0.01≤x≤0.100.01 \leq x \leq 0.10) and as a main phase for large xx (x=0.50x = 0.50). The structure of this misfit phase is studied in detail using a combination of X-ray diffraction and transmission electron microscopy techniques

    Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskites

    Get PDF
    Two-dimensional metal halide perovskites of Ruddlesden–Popper type have recently moved into the centre of attention of perovskite research due to their potential for light generation and for stabilisation of their 3D counterparts. It has become widespread in the field to attribute broad luminescence with a large Stokes shift to self-trapped excitons, forming due to strong carrier–phonon interactions in these compounds. Contrarily, by investigating the behaviour of two types of lead-iodide based single crystals, we here highlight the extrinsic origin of their broad band emission. As shown by below-gap excitation, in-gap states in the crystal bulk are responsible for the broad emission. With this insight, we further the understanding of the emission properties of low-dimensional perovskites and question the generality of the attribution of broad band emission in metal halide perovskite and related compounds to self-trapped excitons

    Elucidating the Structure and Photophysics of Layered Perovskites through Cation Fluorination

    Get PDF
    Optoelectronic devices based on layered perovskites containing fluorinated cations display a well-documented improved stability and enhanced performance over non-fluorinated cations. The effect of fluorination on the crystal structure and photophysics, however, has received limited attention up until now. Here, 3-fluorophenethylammonium lead iodide ((3-FPEA)(2)PbI4) single crystals are investigated and their properties to the non-fluorinated ((PEA)(2)PbI4) variant are compared. The bulkier 3-FPEA cation increases the distortion of the inorganic layers, resulting in a blue-shifted absorbance and photoluminescence. Temperature-dependent photoluminescence spectroscopy reveals an intricate exciton substructure in both cases. The fluorinated variant shows hot-exciton resonances separated by 12 to 15 meV, values that are much smaller than the 40 to 46 meV found for (PEA)(2)PbI4. In addition, high-resolution spectra show that the emission at lower energies consists of a substructure, previously thought to be a single line. With the analysis on the resolved photoluminescence, a vibronic progression is excluded as the origin of the emission at lower energies. Instead, part of the excitonic substructure is proposed to originate from bound excitons. This work furthers the understanding of the photophysics of layered perovskites that has been heavily debated lately

    Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes

    Get PDF
    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C6H5CH2NH3)2PbI4) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5-1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C6H5CH2NH3)2PbI4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices

    Gradual emergence of superconductivity in underdoped LSCO

    Get PDF
    We present triple-axis neutron scattering studies of low-energy magnetic fluctuations in strongly underdoped La2−x_{2-x}Srx_{x}CuO4_{4} with x=0.05x=0.05, 0.060.06 and 0.070.07, providing quantitative evidence for a direct competition between these fluctuations and superconductivity. At dopings x=0.06x=0.06 and x=0.07x=0.07, three-dimensional superconductivity is found, while only a very weak signature of two-dimensional superconductivity residing in the CuO2_2 planes is detectable for x=0.05x=0.05. We find a surprising suppression of the low-energy fluctuations by an external magnetic field at all three dopings. This implies that the response of two-dimensional superconductivity to a magnetic field is similar to that of a bulk superconductor. Our results provide direct evidence of a very gradual onset of superconductivity in cuprates.Comment: 5 pages, 4 figures, and supplementary materia

    Surface states in bulk single crystal of topological semimetal Co3Sn2S2 toward water oxidation

    Get PDF
    The band inversion in topological phase matters bring exotic physical properties such as the topologically protected surface states (TSS). They strongly influence the surface electronic structures of the materials and could serve as a good platform to gain insight into the surface reactions. Here we synthesized high-quality bulk single crystals of Co3Sn2S2 that naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust TSS from the Co atoms. Co3Sn2S2 crystals expose their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring TSS for the rational design of high-activity electrocatalysts

    Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative

    Get PDF
    In this work, we investigate how electron extraction layers (EELs) with different dielectric constants affect the device performance and the light-soaking phenomenon in hybrid perovskite solar cells (HPSCs). Fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) having a dielectric constant of 5.9 is employed as an EEL in HPSCs. The commonly used fullerene derivative [60] PCBM, which has identical energy levels but a lower dielectric constant of 3.9, is used as a reference. The device using PTEG-1 as the EEL shows a negligible light soaking effect, with a power conversion efficiency (PCE) of 15.2% before light soaking and a minor increase to 15.7% after light soaking. In contrast, the device using [60] PCBM as the EEL shows severe light soaking, with the PCE improving from 3.8% to 11.7%. Photoluminescence spectroscopy and impedance spectroscopy measurements indicate that trap-assisted recombination at the interface between the hybrid perovskite and the EEL is the cause of the light soaking effect in HPSCs. The trap-assisted recombination is effectively suppressed at the perovskite/PTEG-1 interface, while severe trap assisted recombination takes place at the perovskite/[60] PCBM interface. We attributed these experimental findings to the fact that the higher dielectric constant of PTEG-1 helps to screen the recombination between the traps and free electrons. In addition, the electron donating side chains of PTEG-1 may also contribute to the passivation of the electron traps. As a consequence, the devices using PTEG-1 as the EEL display a considerable increase in the efficiency and a negligible light soaking effect
    corecore