1,025 research outputs found

    The Linkage Between Income Distribution and Clean Energy Investments: Addressing Financing Cos

    Get PDF
    With a focus on alternative methods for accelerating clean energy policy adoption, this study introduces an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low-income households. Limited access to credit, due to socio-economic status and the lack of guarantees, are key issues related to financing barriers. Implementing a policy such as PACE – Property Assessed Clean Energy – allows for the provision of up-front funds for residential property owners to install electric and thermal solar systems and make energy-efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially when the lack of access to capital tends to stall them.Financing Barriers, Energy Efficiency, Solar PV, Energy Investments

    Deploy diverse renewables to save tropical rivers.

    Get PDF
    A strategic mix of solar, wind and storage technologies around river basins would be safer and cheaper than building large dams, argue Rafael J. P. Schmitt, Noah Kittner and colleagues

    Quantifying the effects of exposure to indoor air pollution from biomass combustion on acute respiratory infections in developing countries.

    Get PDF
    Acute respiratory infections (ARI) are the leading cause of burden of disease worldwide and have been causally linked with exposure to pollutants from domestic biomass fuels in developing countries. We used longitudinal health data coupled with detailed monitoring and estimation of personal exposure from more than 2 years of field measurements in rural Kenya to estimate the exposure-response relationship for particulates < 10 microm diameter (PM(10)) generated from biomass combustion. Acute respiratory infections and acute lower respiratory infections are concave, increasing functions of average daily exposure to PM(10), with the rate of increase declining for exposures above approximately 1,000-2,000 microg/m(3). This first estimation of the exposure-response relationship for the high-exposure levels characteristic of developing countries has immediate and important consequences for international public health policies, energy and combustion research, and technology transfer efforts that affect more than 2 billion people worldwide

    Clean energy deployment: addressing financing cost

    Get PDF
    New methods are needed to accelerate clean energy policy adoption. To that end, this study proposes an innovative financing scheme for renewable and energy efficiency deployment. Financing barriers represent a notable obstacle for energy improvements and this is particularly the case for low income households. Implementing a policy such as PACE—property assessed clean energy—allows for the provision of upfront funds for residential property owners to install electric and thermal solar systems and make energy efficiency improvements to their buildings. This paper will inform the design of better policies tailored to the creation of the appropriate conditions for such investments to occur, especially in those countries where most of the population belongs to the low–middle income range facing financial constraints

    The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs.

    Get PDF
    Globally, almost 3 billion people rely on biomass (wood, charcoal, crop residues, and dung) and coal as their primary source of domestic energy. Exposure to indoor air pollution (IAP) from the combustion of solid fuels is an important cause of morbidity and mortality in developing countries. In this paper, we review the current knowledge on the relationship between IAP exposure and disease and on interventions for reducing exposure and disease. We take an environmental health perspective and consider the details of both exposure and health effects that are needed for successful intervention strategies. We also identify knowledge gaps and detailed research questions that are essential in successful design and dissemination of preventive measures and policies. In addition to specific research recommendations, we conclude that given the interaction of housing, household energy, and day-to-day household activities in determining exposure to indoor smoke, research and development of effective interventions can benefit tremendously from integration of methods and analysis tools from a range of disciplines in the physical, social, and health sciences

    The contributions of emissions and spatial microenvironments to exposure to indoor air pollution from biomass combustion in Kenya.

    Get PDF
    Acute and chronic respiratory diseases, which are causally linked to exposure to indoor air pollution in developing countries, are the leading cause of global morbidity and mortality. Efforts to develop effective intervention strategies and detailed quantification of the exposure-response relationship for indoor particulate matter require accurate estimates of exposure. We used continuous monitoring of indoor air pollution and individual time-activity budget data to construct detailed profiles of exposure for 345 individuals in 55 households in rural Kenya. Data for analysis were from two hundred ten 14-hour days of continuous real-time monitoring of concentrations of particulate matter [less than/equal to] 10 microm in aerodynamic diameter and the location and activities of household members. These data were supplemented by data on the spatial dispersion of pollution and from interviews. Young and adult women had not only the highest absolute exposure to particulate matter (2, 795 and 4,898 microg/m(3) average daily exposure concentrations, respectively) but also the largest exposure relative to that of males in the same age group (2.5 and 4.8 times, respectively). Exposure during brief high-intensity emission episodes accounts for 31-61% of the total exposure of household members who take part in cooking and 0-11% for those who do not. Simple models that neglect the spatial distribution of pollution within the home, intense emission episodes, and activity patterns underestimate exposure by 3-71% for different demographic subgroups, resulting in inaccurate and biased estimations. Health and intervention impact studies should therefore consider in detail the critical role of exposure patterns, including the short periods of intense emission, to avoid spurious assessments of risks and benefits
    corecore