898 research outputs found

    Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

    Get PDF
    The convertible source system for the neutron and the X-ray imagings was installed in the 45MeV electron linear accelerator facility at Hokkaido University. The source system is very useful for a complementary imaging. The imaging measurements for a sample were performed with both beams by using a vacuum tube type image intensifier. The enhanced contrast was obtained from the dataset of the radiograms measured with the neutron and X-ray beams

    Amelioration of normothermic canine liver ischemia with prostacyclin.

    Get PDF
    A model of hepatic ischemia was developed in dogs using a pump-driven splanchnic-to-jugular vein bypass during crossclamping of the portal triad. An LD50 was established with three hours of ischemia. PGI2 given for one hour before the ischemic insult ameliorated the ischemic injury and increased survival

    The Establishment of a Primary Culture System of Proximal Tubule Segments Using Specific Markers from Normal Mouse Kidneys

    Get PDF
    The proximal tubule contains the highest expression of angiotensinogen mRNA and protein within the kidney and plays a vital role in the renal renin-angiotensin system. To study the regulation of angiotensinogen expression in the kidney in more detail, the proximal tubule needs to be accurately isolated from the rest of the nephron and separated into its three segments. The purpose of this study was to design a novel protocol using specific markers for the separation of proximal tubule cells into the three proximal tubule segments and to determine angiotensinogen expression in each segment. Kidneys were removed from C57BL/6J mice. The proximal tubules were aspirated from region of a Percoll gradient solution of the appropriate density. The proximal tubule was then separated into its three segments using segment-specific membrane proteins, after which each segment was characterized by a different specific marker (sodium-glucose transporter 2 for Segment 1; carbonic anhydrase IV for Segment 2; ecto-adenosine triphosphatase for Segment 3). The isolation of proximal tubules into three segments was successful, and angiotensinogen mRNA in Segment 2 and 3 and angiotensinogen protein in all three segments were confirmed. This protocol will be helpful for future studies of the detailed mechanisms of the intrarenal renin-angiotensin system

    Advances and Analysis on Reducing Webpage Response Time with Effect of Edge Computing

    Get PDF
    Modern webpages consist of many rich objects dynamically produced by servers and client terminals at diverse locations, so we face an increase in web response time. To reduce the time, edge computing, in which dynamic objects are generated and delivered from edge nodes, is effective. For ISPs and CDN providers, it is desirable to estimate the effect of reducing the web response time when introducing edge computing. Therefore, in this paper, we derive a simple formula that estimates the lower bound of the reduction of the response time by modeling flows obtaining objects of webpages. We investigate the effect of edge computing in each webpage category, e.g., News and Sports, using data measured by browsing about 1,000 popular webpages from 12 locations in the world on PlanetLab

    Point defect dynamics in bcc metals

    Full text link
    We present an analysis of the time evolution of self-interstitial atom and vacancy (point defect) populations in pure bcc metals under constant irradiation flux conditions. Mean-field rate equations are developed in parallel to a kinetic Monte Carlo (kMC) model. When only considering the elementary processes of defect production, defect migration, recombination and absorption at sinks, the kMC model and rate equations are shown to be equivalent and the time evolution of the point defect populations is analyzed using simple scaling arguments. We show that the typically large mismatch of the rates of interstitial and vacancy migration in bcc metals can lead to a vacancy population that grows as the square root of time. The vacancy cluster size distribution under both irreversible and reversible attachment can be described by a simple exponential function. We also consider the effect of highly mobile interstitial clusters and apply the model with parameters appropriate for vanadium and α−\alpha-iron.Comment: to appear in Phys. Rev.
    • …
    corecore