3,996 research outputs found

    Precision Measurement of the Position-space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Full text link
    Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states, and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.Comment: 13 pages, 5 figure

    Magnetic field-induced deformation of the spin-density wave microphases in Ca3_3Co2_2O6_6

    Full text link
    The frustrated triangular Ising magnet Ca3_3Co2_2O6_6 has long been known for an intriguing combination of extremely slow spin dynamics and peculiar magnetic orders, such as the evenly-spaced non-equilibrium metamagnetic magnetization steps and the long-wavelength spin density wave (SDW) order, the latter of which is essentially an emergent crystal of solitons. Recently, an elaborate field-cooling protocol to bypass the low-field SDW phase was proposed to overcome the extraordinarily long timescale of spin relaxation that impeded previous experimental studies in equilibrium, which may point to a deep connection between the low-temperature slow relaxation and the cooling process passing through the low-field SDW phase. As the first step to elucidate the conjectured connection, we investigate the magnetic field-induced deformation of the SDW state and incommensurate-commensurate transitions, thereby mapping out the equilibrium in-field phase diagram for a realistic three-dimensional lattice spin model by using Monte Carlo simulations. We also discuss Ginzburg-Landau theory that includes several Umklapp terms as well as an effective sine-Gordon model, which can qualitatively explain the observed magnetic field-induced deformation of the SDW microphases.Comment: 9 pages, 5 figure

    The Nagoya cosmic-ray muon spectrometer 3, part 2: Track detector

    Get PDF
    The twelve wide gap spark chambers were utilized as the track detectors of the Nagoya cosmic-ray muon spectrometer not only to obtain the precise locations of particles, but also to get some information about the correspondences between segments of trajectories. The area of each chamber is 150 x 70 sq cm and the width of a gap is 5 cm. The gas used is He at the atmospheric pressure. Each three pairs of them are placed on both sides of the deflection magnet. All images of sparks for each event are projected through the mirror system and recorded by two cameras stereoscopically. The mean detection efficiency of each chamber is 95 + or - 2% and the spacial resolution (jitter and drift) obtained from the prototype-experiment is 0.12 mm. Maximum detectable momentum of the spectrometer is estimated at about 10 TeV/c taking into account these characteristics together with the effects of the energy loss and multiple Coulomb scattering of muons in the iron magnet

    Angular and Abundance Distribution of High-energy Gamma Rays and Neutrons Simulated by GEANT4 Code for Solar Flares

    Full text link
    In the solar flare observed on June 3, 2012, high energy gamma-rays and neutrons were observed. The event includes a remarkable feature of a high neutron/gamma-ratio in the secondary particles. We have examined whether this high n/γ\gamma-ratio can be explained by simulation. As a result of simulations using the GEANT4 program, the high n/γ\gamma-ratio may be reproduced for the case that helium and other heavy ions were dominantly accelerated in the flare.Comment: submitted to the Proceeding of The 20th International Symposium on Very High Energy Cosmic Ray Interaction (ISVHECRI 2018, Nagoya, Japan), Europian Physics Journa

    Monolithic Ge:Ga Detector Development for SAFARI

    Full text link
    We describe the current status and the prospect for the development of monolithic Ge:Ga array detector for SAFARI. Our goal is to develop a 64x64 array for the 45 -- 110 um band, on the basis of existing technologies to make 3x20 monolithic arrays for the AKARI satellite. For the AKARI detector we have achieved a responsivity of 10 A/W and a read-out noise limited NEP (noise equivalent power) of 10^-17 W/rHz. We plan to develop the detector for SAFARI with technical improvements; significantly reduced read-out noise with newly developed cold read-out electronics, mitigated spectral fringes as well as optical cross-talks with a multi-layer antireflection coat. Since most of the elemental technologies to fabricate the detector are flight-proven, high technical readiness levels (TRLs) should be achieved for fabricating the detector with the above mentioned technical demonstrations. We demonstrate some of these elemental technologies showing results of measurements for test coatings and prototype arrays.Comment: To appear in Proc. Workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies". Eds. A.M. Heras, B. Swinyard, K. Isaak, and J.R. Goicoeche

    Multiferroic behavior in trimerized Mott insulators

    Full text link
    We demonstrate multiferroic behavior in trimerized Mott insulators through interplay between spins and electric dipole moments resulting from electronic charge fluctuations in frustrated units. The model consists of stacked triangular layers of trimers with small intertrimer exchange interactions J′J' and J"J". Ferroelectric states coexist with ferro- or antiferromagnetic orderings depending on the value of the magnetic field HH and the sign of the interlayer exchange J"J". The electric polarization undergoes abrupt changes as a function of HH.Comment: 5 pages, 2 figures; published in Phys. Rev. Let
    • …
    corecore