244 research outputs found

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial services—as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial services—as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Citizen science as a new tool in dog cognition research

    Get PDF
    The work of Á.M. was supported by the Hungarian Academy of Sciences (MTA 01 031).Family dogs and dog owners offer a potentially powerful way to conduct citizen science to answer questions about animal behavior that are difficult to answer with more conventional approaches. Here we evaluate the quality of the first data on dog cognition collected by citizen scientists using the Dognition. com website. We conducted analyses to understand if data generated by over 500 citizen scientists replicates internally and in comparison to previously published findings. Half of participants participated for free while the other half paid for access. The website provided each participant a temperament questionnaire and instructions on how to conduct a series of ten cognitive tests. Participation required internet access, a dog and some common household items. Participants could record their responses on any PC, tablet or smartphone from anywhere in the world and data were retained on servers. Results from citizen scientists and their dogs replicated a number of previously described phenomena from conventional lab-based research. There was little evidence that citizen scientists manipulated their results. To illustrate the potential uses of relatively large samples of citizen science data, we then used factor analysis to examine individual differences across the cognitive tasks. The data were best explained by multiple factors in support of the hypothesis that nonhumans, including dogs, can evolve multiple cognitive domains that vary independently. This analysis suggests that in the future, citizen scientists will generate useful datasets that test hypotheses and answer questions as a complement to conventional laboratory techniques used to study dog psychology.Publisher PDFPeer reviewe

    Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    Full text link
    Abstract Background: For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods: The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results: The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions: The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98438/1/cbr%2E2011%2E1053.pd

    Strong cardiovascular prognostic implication of quantitative left atrial contractile function assessed by cardiac magnetic resonance imaging in patients with chronic hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Progressive left ventricular (LV) diastolic dysfunction due to hypertension (HTN) alters left atrial (LA) contractile function in a predictable manner. While increased LA size is a marker of LV diastolic dysfunction and has been shown to be predictive of adverse cardiovascular outcomes, the prognostic significance of altered LA contractile function is unknown.</p> <p>Methods</p> <p>A consecutive group of patients with chronic hypertension but without significant valvular disease or prior MI underwent clinically-indicated CMR for assessment of left ventricular (LV) function, myocardial ischemia, or viability. Calculation of LA volumes used in determining LA emptying functions was performed using the biplane area-length method.</p> <p>Results</p> <p>Two-hundred and ten patients were included in this study. During a median follow-up of 19 months, 48 patients experienced major adverse cardiac events (MACE), including 24 deaths. Decreased LA contractile function (LAEF<sub>Contractile</sub>) demonstrated strong unadjusted associations with patient mortality, non-fatal events, and all MACE. For every 10% reduction of LAEF<sub>Contractile</sub>, unadjusted hazards to MACE, all-cause mortality, and non-fatal events increased by 1.8, 1.5, and 1.4-folds, respectively. In addition, preservation of the proportional contribution from LA contraction to total diastolic filling (Contractile/Total ratio) was strongly associated with lower MACE and patient mortality. By multivariable analyses, LAEF<sub>Contractile </sub>was the strongest predictor in each of the best overall models of MACE, all-cause mortality, and non-fatal events. Even after adjustment for age, gender, left atrial volume, and LVEF, LAEF<sub>Contractile </sub>maintained strong independent associations with MACE (p < 0.0004), all-cause mortality (p < 0.0004), and non-fatal events (p < 0.0004).</p> <p>Conclusions</p> <p>In hypertensive patients at risk for left ventricular diastolic dysfunction, a decreased contribution of LA contractile function to ventricular filling during diastole is strongly predictive of adverse cardiac events and death.</p

    Fast imaging of live organisms with sculpted light sheets.

    Get PDF
    Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.This work was funded by grants from the Wellcome Trust, the Medical Research Council, the CamBridgeSense network, Carlsberg Foundation, the Alzheimer Research UK Trust and the Biotechnology and Biological Sciences Research Council and the Wolfson Foundation.This is the final version of the article. It first appeared at http://dx.doi.org/10.1038/srep09385

    Biological-Effect Modeling of Radioimmunotherapy for Non-Hodgkins Lymphoma: Determination of Model Parameters

    Full text link
    Treatment with Tositumomab and 131I tositumomab anti-CD20 radioimmunotherapy (Bexxar) yields a nonradioactive antibody antitumor response (the so-called cold effect) and a radiation response. Numerical parameter determination by least-squares (LS) fitting was implemented for more accurate parameter estimates in equivalent biological-effect calculations. Methods: One hundred thirty-two tumors in 37 patients were followed using five or six SPECT/CT studies per patient, three each (typical) post-tracer (0.2 GBq) and post-therapy (?3 GBq) injections. The SPECT/CT data were used to calculate position- and time-dependent dose rates and antibody concentrations for each tumor. CT-defined tumor volumes were used to track tumor volume changes. Combined biological-effect and cell-clearance models were fit to tumor volume changes. Optimized parameter values determined using LS fitting were compared to previous fitted values that were determined by matching calculated to measured tumor volume changes using visual assessment. Absorbed dose sensitivity (α) and cold-effect sensitivity (?p) parameters were the primary fitted parameters, yielding equivalent biological-effect (E) values. Results: Individual parameter uncertainties were approximately 10% and 30% for α and ?p, respectively. LS versus previously fit parameter values were highly correlated, although the averaged α value decreased and the averaged ?p value increased for the LS fits compared to the previous fits. Correlation of E with 2-month tumor shrinkage data was similar for the two fitting techniques. The LS fitting yielded improved fit quality and likely improved parameter estimation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140326/1/cbr.2012.1467.pd

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Striped instability of a holographic Fermi-like liquid

    Full text link
    We consider a holographic description of a system of strongly-coupled fermions in 2+1 dimensions based on a D7-brane probe in the background of D3-branes. The black hole embedding represents a Fermi-like liquid. We study the excitations of the Fermi liquid system. Above a critical density which depends on the temperature, the system becomes unstable towards an inhomogeneous modulated phase which is similar to a charge density and spin wave state. The essence of this instability can be effectively described by a Maxwell-axion theory with a background electric field. We also consider the fate of zero sound at non-zero temperature.Comment: 16 pages, 9 figures; v2: added discussion and one figure. Typos correcte
    • 

    corecore