83 research outputs found

    Can the Low-Resolution Structures of Photointermediates of Bacteriorhodopsin Explain Their Crystal Structures?

    Get PDF
    AbstractTo understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstrated local structural changes, such as hydrogen bond network rearrangements including water molecules, the large conformational changes at the helix level are not necessarily observed. Furthermore, the two reported crystal structures of an intermediate accumulated using a common method were distinct. To reconcile these apparent discrepancies, low-resolution projection maps were calculated from the crystal structures and compared to the low-resolution intermediate structures obtained using native membranes. The crystal structures can be categorized into three groups, which qualitatively correspond to the low-resolution structures of the M1-type, M2-type, and N-type determined in the native membrane. Based on these results, we conclude that at least three types of intermediate structures play a role during the photocycle

    Trimeric mutant bacteriorhodopsin, D85N, shows a monophasic CD spectrum

    Get PDF
    AbstractThe structure of mutant bacteriorhodopsin (bR), D85N, was examined by CD and X-ray diffraction at pH 7. The absorption maximum of D85N at pH 7 is located at 605 nm, which is similar to the acid-blue form of wild-type bR. D85N shows a monophasic CD band, the maximum of which is at 575 nm, although the crystalline arrangement and the trimeric structure is maintained. The acid-blue form of wild-type bR shows a biphasic CD despite the similarity in absorption spectra

    Comprehensive Determination of Protein Tyrosine pK(a) Values for Photoactive Yellow Protein Using Indirect C-13 NMR Spectroscopy

    Get PDF
    Upon blue-light irradiation, the bacterium Halorhodospira halophila is able to modulate the activity of its flagellar motor and thereby evade potentially harmful UV radiation. The 14 kDa soluble cytosolic photoactive yellow protein (PYP) is believed to be the primary mediator of this photophobic response, and yields a UV/Vis absorption spectrum that closely matches the bacterium's motility spectrum. In the electronic ground state, the para-coumaric acid (pCA) chromophore of PYP is negatively charged and forms two short hydrogen bonds to the side chains of Glu-46 and Tyr-42. The resulting acid triad is central to the marked pH dependence of the optical-absorption relaxation kinetics of PYP. Here, we describe an NMR approach to sequence-specifically follow all tyrosine side-chain protonation states in PYP from pH 3.41 to 11.24. The indirect observation of the nonprotonated (13)C(γ) resonances in sensitive and well-resolved two-dimensional (13)C-(1)H spectra proved to be pivotal in this effort, as observation of other ring-system resonances was hampered by spectral congestion and line-broadening due to ring flips. We observe three classes of tyrosine residues in PYP that exhibit very different pK(a) values depending on whether the phenolic side chain is solvent-exposed, buried, or hydrogen-bonded. In particular, our data show that Tyr-42 remains fully protonated in the pH range of 3.41–11.24, and that pH-induced changes observed in the photocycle kinetics of PYP cannot be caused by changes in the charge state of Tyr-42. It is therefore very unlikely that the pCA chromophore undergoes changes in its electrostatic interactions in the electronic ground state

    Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery

    Get PDF
    The ability to avoid blue-light radiation is crucial for bacteria to survive. In Halorhodospira halophila, the putative receptor for this response is known as photoactive yellow protein (PYP). Its response to blue light is mediated by changes in the optical properties of the chromophore para-coumaric acid (pCA) in the protein active site. PYP displays photocycle kinetics with a strong pH dependence for ground-state recovery, which has remained enigmatic. To resolve this problem, a comprehensive pK(a) determination of the active-site residues of PYP is required. Herein, we show that Glu-46 stays protonated from pH 3.4 to pH 11.4 in the ground (pG) state. This conclusion is supported by the observed hydrogen-bonded protons between Glu-46 and pCA and Tyr-42 and pCA, which are persistent over the entire pH range. Our experimental results show that none of the active-site residues of PYP undergo pH-induced changes in the pG state. Ineluctably, the pH dependence of pG recovery is linked to conformational change that is dependent upon the population of the relevant protonation state of Glu-46 and the pCA chromophore in the excited state, collaterally explaining why pG recovery is slow

    連続滴定X線溶液散乱測定を志向した<i>μ</i>流路型自動サンプリングシステムの開発

    No full text

    Structural Basis for the Function of the β-Barrel Assembly-Enhancing Protease BepA

    No full text
    The β-barrel assembly machinery (BAM) complex mediates the assembly of β-barrel membrane proteins in the outer membrane. BepA, formerly known as YfgC, interacts with the BAM complex and functions as a protease/chaperone for the enhancement of the assembly and/or degradation of β-barrel membrane proteins. To elucidate the molecular mechanism underlying the dual functions of BepA, its full-length three-dimensional structure is needed. Here, we report the crystal structure of full-length BepA at 2.6-Å resolution. BepA possesses an N-terminal protease domain and a C-terminal tetratricopeptide repeat domain, which interact with each other. Domain cross-linking by structure-guided introduction of disulfide bonds did not affect the activities of BepA in vivo, suggesting that the function of this protein does not involve domain rearrangement. The full-length BepA structure is compatible with the previously proposed docking model of BAM complex and tetratricopeptide repeat domain of BepA

    Concentration-Dependent Tetramerization of Bovine Visual Arrestin

    Get PDF
    The oligomeric states of bovine visual arrestin in solution were studied by small-angle x-ray scattering. The Guinier plot of arrestin at the concentration ranging from 0.4 mg/ml to 11.1 mg/ml was approximated with a straight line, and the apparent molecular weight was evaluated by the concentration-normalized intensity at zero angle (I(0)/conc). Using ovalbumin as a molecular weight standard, it was found that arrestin varied from monomer to tetramer depending on the concentration. The I(0)/conc decreased at high-salt concentration, but was independent of temperature. The simulation analysis of the concentration-dependent increase of I(0)/conc demonstrated that the tetramerization is highly cooperative, and arrestin at the physiological concentration is virtually in the equilibrium between monomer and tetramer. The concentration of arrestin monomer, which is considered to be an active form, remains at an almost constant level even if the total concentration of arrestin fluctuates within the physiological range. The scattering profile of arrestin tetramer in solution was in good agreement with that in the crystal, indicating that the quaternary structure in solution is essentially identical to that in crystal. Small-angle x-ray scattering was applied to a binding assay of phosphorylated rhodopsin and arrestin in the detergent system, and we directly observed their association as the increase of I(0)/conc

    2003. Comparison of the photochemical reaction of photoactive yellow protein in crystal with reaction in solution

    No full text
    Abstract. Photoactive yellow protein (PYP) is a photoreceptor protein for the negative phototaxis of Ectothiorhodospira halophila. The crystal structures of several photo-intermediates have been revealed by X-ray crystallography. In the crystal structure of the active intermediate, PYPM, no significant structural changes were observed except for the vicinity of the chromophore. On the contrary, spectroscopic studies with solution condition demonstrated that global structural changes occur during the photo-cycle. In order to reveal the origin of the discrepancies, we measured the reaction kinetics upon illumination under crystal condition and to compare them with those observed under solution condition. The reactive portion decreases with the increase of crystallinity. The rate constant of PYPM decay also decreases with the increase of crystallinity. These results suggest two possibilities: (1) PYP in crystal does not react by the illumination; (2) the photoreaction rate is highly accelerated in crystal. Consequently, the photoreaction in crystal is considered to be highly influenced by the force constraint from crystalline lattice. Abbreviations PYP, photoactive yellow protein from Ectothiorhodospira halophila; MES, 2-(N-morpholino) ethanesulfonic acid; FTIR, Fourier transform infrared, Rg, radius of gyration
    corecore