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The structure of mutant bacteriorhodopsin (bR), D85N, was examined by CD and X-ray diffraction at pH 7. The absorption maximum of D85N 
at pH 7 is located at 605 nm, which is similar to the acid-biue form of wild-type bR. D85N shows a monophasic CD band, the maximum of which 
is at 575 nm, although the crystalline arrangement and the trimeric structure is rn~nt~n~. The acid-blue form of wild-type bR shows a biphasic 

CD despite the similarity in absorption spectra. 
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1. I~RODUCTION 

Bacteriorhodopsin (bR), the sole protein of purple 
membrane of Halobacterium halobium, is a light-driven 
proton pump which generates a trans-membrane elec- 
troche~cal gradient [l]. bR molecules are arranged in 
trimers which form a two-dimensional hexagonal lattice 
[2,3]. The three-dimensional structure of bR at moder- 
ate resolution has been solved to clarify the locations 
and orientations of some amino acid residues [3]. The 
structural changes that occur upon formation of the M 
inte~ediate have been determined [4-61. The role of 
each amino acid residue in the proton pumping activity 
has been revealed by the site-directed mutagenesis (for 
review, see [7]). Studies using mutagenic techniques 
have revealed the importance of aspartates in the pro- 
ton pumping activity and spectroscopic properties of 
bR 17-111. 

Replacement of D85 by N shows dramatic effects on 
the visible spectrum and proton-pumping activity 
[8,9,12]. Recently, it is shown that D85N exists as three 
distinct spectroscopic species in equilibrium [ 131. 
Turner et al. argued that these three species are closely 
related to M, N and 0 intermediates 1131. D85N is 
dominated by a blue species at pH 7, which would be 
related to 0, and a yellowish pigment at pH 12, which 
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would be related to M [13]. Structural studies of D85N 
is of great interest in the context of the structural anal- 
yses of the photo-intermediates. 

We have started intensive investigation of the struc- 
ture of D85N using CD and X-ray diffraction. CD has 
been widely used to help understand the chromophoric 
properties of bR [14-171. The CD spectrum in the visi- 
ble region of native bR is composed of a pair of negative 
and positive bands [14,15]. The origin of this biphasic 
shape is understood to be an exciton coupling between 
the chromophores in the trimeric structure of bR 
116,171, although some ar~ents against the exciton 
model have been raised [l&19]. During the structural 
studies of DUN, we found that D85N shows a mono- 
phasic CD spectrum despite the fact that the crystalline 
structure is maintained. Here, we report the CD spec- 
trum of D85N as compared with that of native bR. 

2. MATERIALS AND METHODS 

2.1. Sample preparation 
Purple membrane containing wild-type bR was isolated from H. 

haiob~~ strain RlMl by a standard procedure [20]. H. haZobi~ 
containing the r~ombinant D85N bR gene was constructed using a 
shuttle vector, as described [I 1,211. D85N bR was prepared as purple 
membrane sheets, by the same method as for wild-type preparation. 

2.2. Measurement of optical properties 
Absorption spectra were measured with a Shiadxu UV160 spec- 

trophotometer at room temperature. CD spectra were measured with 
a JASCO s~tro~la~meter, model J-SOOA, using a quartz cell of 5 
mm optical path. Each CD spectrum was collected 4 times. The purple 
membrane concentration was determined spectrophotometrically 
based on the absorbance at 280 nm of the wild-type. The temperature 
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was maintained at 20°C by circulating thermostated water through the 
cuvette holder. Both spectrometers were individually controlled by a 
personal computer, NEC PC9801. 

2.3. X-ray diffraction experiment 
X-ray diffraction measurements were carried out with the MUS- 

CLE Diffractometer at BL-ISA in the Photon Factory according to 

151. 

3. RESULTS AND DISCUSSION 

The absorption maximum of D85N at pH 7 is located 
at 605 nm, so the color is blue. Although three spectro- 
scopically distinct species are in equilibrium in D85N, 
the blue pigment (&,, = 605 nm) is dominant at pH 7. 
According to Turner et al., at pH 7, the amount of 
yellow pigment is less than 5% and the amount of purple 
pigment is almost zero [13], although their A,,,,, of blue 
pigment was reported to be 615 nm. 

Fig. 1 shows CD spectra of D85N and wild-type bR 
at pH 7. The characteristic biphasic band is clearly seen 
in the wild-type spectrum. On the other hand, D85N 
shows a monophasic CD spectrum, which is completely 
different from that of the wild-type. The CD peak of 
D85N is located at about 575 nm, while the absorption 
maximum is located at 605 nm. According to the exci- 
ton coupling model, such a monophasic CD spectrum 
is considered to be an indication of monomeric bR. In 
fact, bR solubilized in Triton X-100 gave a monophasic 
CD and was therefore interpreted as a monomer [15]. 

The X-ray diffraction profile from the purple mem- 
brane composed of D85N is shown in Fig. 2. The profile 
is essentially identical to the X-ray diffraction pattern 
of the wild-type. The diffraction lines appear at the 
same positions, and the relative intensity of each reflec- 
tion is similar to that of the wild-type. Moreover, nei- 
ther broadenings of reflection lines nor an increase of 
diffuse background were observed. These facts indicate 
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Fig. 1. Visible CD spectra of the D85N bR mutant (curve 1) and 
wild-type bR (curve 2) at pH 7. The purple membrane concentrations 
were 70.1 PM for D85N and 58.7 PM for the wild-type, respectively. 
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Fig. 2. X-ray diffraction profile of the purple membrane composed of 
D85N at pH 7. Bragg reflections up to (7,l) are clearly observed. S 
is defined as 2sinBljl, where 20 and 1 are the scattering angle and the 

X-ray wavelength, respectively. 

that neither the crystalline arrangement of bR nor the 
trimeric structure are significantly affected by the muta- 
tion. Therefore, the monophasic CD of D85N should 
be attributable an origin other than a monomer. How- 
ever, the result does not necessarily argue against the 
exciton coupling model. Exciton coupling should be 
extremely sensitive to the arrangement of chromophore, 
retinal [16]. It is possible that the replacement, D-to-N 
affects an orientation of retinal. Another possible, but 
unlikely, explanation for the monophasic CD of D85N 
based on the exciton coupling model is that lattice vi- 
brations are of a sufficient degree to interact with exci- 
ton. The interaction would decouple excitons to give a 
monophasic CD [ 171. The latter explanation is given for 
the monophasic CD of the M intermediate and bR 
treated with dimethyl sulfoxide or sodium borohydride 
[ 171. Such global structure changes occur in the M inter- 
mediate [3-51. Chemical treatment seems to increase 
membrane fluidity. These changes would bring about a 
change in lattice vibrations [17]. 

Another important feature of the CD of D85N is that 
the maximum of the CD band is 30 nm shorter than the 
absorption maximum. The difference between CD max- 
imum and absorption maximum is also seen in solubil- 
ized bR: the CD maximum is 545 nm while the absorp- 
tion maximum is 558 nm [15]. Similar differences are 
also seen in the case of the visual pigment, rhodopsin 
[22]. Kakitani and Kakitani [23] demonstrated that the 
difference can be explained by an electron-vibration 
interaction. Assuming that the CD spectrum of D85N 
is its intrinsic CD, we consider that the difference is 
attributable to an electron-vibration interaction. 

Wild-type bR shows an acid-induced purple-to-blue 
transition. The acid-induced blue form has its absorp- 
tion maximum at 605 nm [24,25], which is similar to 
D85N at pH 7. Fig. 3 shows the comparison of CD 
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Fig. 3. Visible CD spectra of D85N bR mutant at pH 7 (curve 1) and 
wild-type bR at pH 3 (curve 2). The purple membrane concentrations 

were 70.1 PM for D85N and 48.9 PM for the wild-type. 

spectra between D85N at pH 7 and the wild-type acid- 
blue state (pH 3). Apparently, the acid-blue form shows 
a biphasic CD band characteristic of wild-type bR, al- 
though the baseline around 400 nm is slightly affected 
by aggregation. The cross-over point (605 nm) coincides 
with the absorption maximum, a feature that is the same 
as the CD of wild-type bR at neutral pH. Thus, we can 
say that the wild-type acid-blue form shows an exciton 
coupling. However, the X-ray diffraction pattern from 
the acid-blue form indicates that the crystalline struc- 
ture has almost disappeared (unpublished result and 
[26]). We have to assume that the trimeric structure of 
bR would be stable and independent of crystalline struc- 
ture if the biphasic CD comes from exciton coupling. 

The difference in CD indicates that the chromophoric 
orientation in D85N is quite different from the wild- 
type acid-blue form, despite the similarity in absorption 
spectra. Acid-mediated protonation of D85 would be 
involved in the purple-to-blue transition of the wild- 
type bR [13]. The small difference between protonated 
aspartic acid and the uncharged aspartic acid analog, 
aspargine, would cause the delicate orientational differ- 
ence of chromophore retinal. 

An argument against the exciton coupling model has 
been raised in [ 18,191. The following feature of the pres- 
ent results would be appropriate evidence against the 
exciton coupling model: the trimeric mutant bR shows 
a monophasic CD, while a biphasic CD is observed for 
acid-blue wild-type bR despite of the loss of crystallin- 
ity. However, as mentioned above, these results may be 
interpretable in terms of the exciton coupling model 
under some assumptions for the bR structure. The X- 
ray diffraction shown in Fig. 2 is not sufficient to see the 
chromophoric orientation. Until the detailed structure 
of D85N becomes available, we will not be able to sup- 
port or discount the exciton coupling model. Appar- 

ently, the D85N mutant bR is a good model to consider 
the origin of CD of bR. In order to reveal the origin of 
CD, further structural studies, as well as the pH depend- 
ence of CD of D85N, are now under way by our group. 
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