59 research outputs found

    PMP22 exon 4 deletion causes ER retention of PMP22 and a gain-of-function allele in CMT1E

    Get PDF
    OBJECTIVE: To determine whether predicted fork stalling and template switching (FoSTeS) during mitosis deletes exon 4 in peripheral myelin protein 22 KD (PMP22) and causes gain‐of‐function mutation associated with peripheral neuropathy in a family with Charcot–Marie–Tooth disease type 1E. METHODS: Two siblings previously reported to have genomic rearrangements predicted to involve exon 4 of PMP22 were evaluated clinically and by electrophysiology. Skin biopsies from the proband were studied by RT‐PCR to determine the effects of the exon 4 rearrangements on exon 4 mRNA expression in myelinating Schwann cells. Transient transfection studies with wild‐type and mutant PMP22 were performed in Cos7 and RT4 cells to determine the fate of the resultant mutant protein. RESULTS: Both affected siblings had a sensorimotor dysmyelinating neuropathy with severely slow nerve conduction velocities (<10 m/sec). RT‐PCR studies of Schwann cell RNA from one of the siblings demonstrated a complete in‐frame deletion of PMP22 exon 4 (PMP22Δ4). Transfection studies demonstrated that PMP22Δ4 protein is retained within the endoplasmic reticulum and not transported to the plasma membrane. CONCLUSIONS: Our results confirm that that FoSTeS‐mediated genomic rearrangement produced a deletion of exon 4 of PMP22, resulting in expression of both PMP22 mRNA and protein lacking this sequence. In addition, we provide experimental evidence for endoplasmic reticulum retention of the mutant protein suggesting a gain‐of‐function mutational mechanism consistent with the observed CMT1E in this family. PMP22Δ4 is another example of a mutated myelin protein that is misfolded and contributes to the pathogenesis of the neuropathy

    Mutations in the cytoplasmic domain of P0 reveal a role for PKC-mediated phosphorylation in adhesion and myelination

    Get PDF
    Mutations in P0 (MPZ), the major myelin protein of the peripheral nervous system, cause the inherited demyelinating neuropathy Charcot-Marie-Tooth disease type 1B. P0 is a member of the immunoglobulin superfamily and functions as a homophilic adhesion molecule. We now show that point mutations in the cytoplasmic domain that modify a PKC target motif (RSTK) or an adjacent serine residue abolish P0 adhesion function and can cause peripheral neuropathy in humans. Consistent with these data, PKCα along with the PKC binding protein RACK1 are immunoprecipitated with wild-type P0, and inhibition of PKC activity abolishes P0-mediated adhesion. Point mutations in the RSTK target site that abolish adhesion do not alter the association of PKC with P0; however, deletion of a 14 amino acid region, which includes the RSTK motif, does abolish the association. Thus, the interaction of PKCα with the cytoplasmic domain of P0 is independent of specific target residues but is dependent on a nearby sequence. We conclude that PKC-mediated phosphorylation of specific residues within the cytoplasmic domain of P0 is necessary for P0-mediated adhesion, and alteration of this process can cause demyelinating neuropathy in humans

    Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKCα

    Get PDF
    Point mutations in the cytoplasmic domain of myelin protein zero (P0; the major myelin protein in the peripheral nervous system) that alter a protein kinase Cα (PKCα) substrate motif (198HRSTK201) or alter serines 199 and/or 204 eliminate P0-mediated adhesion. Mutation in the PKCα substrate motif (R198S) also causes a form of inherited peripheral neuropathy (Charcot Marie Tooth disease [CMT] 1B), indicating that PKCα-mediated phosphorylation of P0 is important for myelination. We have now identified a 65-kD adaptor protein that links P0 with the receptor for activated C kinase 1 (RACK1). The interaction of p65 with P0 maps to residues 179–197 within the cytoplasmic tail of P0. Mutations or deletions that abolish p65 binding reduce P0 phosphorylation and adhesion, which can be rescued by the substitution of serines 199 and 204 with glutamic acid. A mutation in the p65-binding sequence G184R occurs in two families with CMT, and mutation of this residue results in the loss of both p65 binding and adhesion function

    Altered high-energy phosphate and membrane metabolism in Pelizaeus-Merzbacher disease using phosphorus magnetic resonance spectroscopy

    Get PDF
    Pelizaeus-Merzbacher disease is an X-linked recessive leucodystrophy of the central nervous system caused by mutations affecting the major myelin protein, proteolipid protein 1. The extent of the altered in vivo neurochemistry of protein, proteolipid protein 1 duplications, the most common form of Pelizaeus-Merzbacher disease, is, however, poorly understood. Phosphorus magnetic resonance spectroscopy is the only in vivo technique that can assess the biochemistry associated with high-energy phosphate and membrane phospholipid metabolism across different cortical, subcortical and white matter areas. In this cross-sectional study, whole-brain, multi-voxel phosphorus magnetic resonance spectroscopy was acquired at 3 T on 14 patients with Pelizaeus-Merzbacher disease with protein, proteolipid protein 1 duplications and 23 healthy controls (all males). Anabolic and catabolic levels of membrane phospholipids (phosphocholine and phosphoethanolamine, and glycerophosphoethanolamine and glycerophosphocholine, respectively), as well as phosphocreatine, inorganic orthophosphate and adenosine triphosphate levels relative to the total phosphorus magnetic resonance spectroscopy signal from 12 different cortical and subcortical areas were compared between the two groups. Independent of brain area, phosphocholine, glycerophosphoethanolamine and inorganic orthophosphate levels were significantly lower (P = 0.0025, P \u3c 0.0001 and P = 0.0002) and phosphocreatine levels were significantly higher (P \u3c 0.0001) in Pelizaeus-Merzbacher disease patients compared with controls. Additionally, there was a significant group-by-brain area interaction for phosphocreatine with post-hoc analyses demonstrating significantly higher phosphocreatine levels in patients with Pelizaeus-Merzbacher disease compared with controls across multiple brain areas (anterior and posterior white matter, superior parietal lobe, posterior cingulate cortex, hippocampus, occipital cortex, striatum and thalamus; all P ≀ 0.0042). Phosphoethanolamine, glycerophosphoethanolamine and adenosine triphosphate levels were not significantly different between groups. For the first-time, widespread alterations in phosphorus magnetic resonance spectroscopy metabolite levels of Pelizaeus-Merzbacher disease patients are being reported. Specifically, increased high-energy phosphate storage levels of phosphocreatine concomitant with decreased inorganic orthophosphate across multiple areas suggest a widespread reduction in the high-energy phosphate utilization in Pelizaeus-Merzbacher disease, and the membrane phospholipid metabolite deficits suggest a widespread degradation in the neuropil content/maintenance of patients with Pelizaeus-Merzbacher disease which includes axons, dendrites and astrocytes within cortex and the myelin microstructure and oligodendrocytes within white matter. These results provide greater insight into the neuropathology of Pelizaeus-Merzbacher disease both in terms of energy expenditure and membrane phospholipid metabolites. Future longitudinal studies are warranted to investigate the utility of phosphorus magnetic resonance spectroscopy as surrogate biomarkers in monitoring treatment intervention for Pelizaeus-Merzbacher disease

    Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells

    Get PDF
    The neurofibromatosis type 1 tumor suppressor protein neurofibromin, is a GTPase activating protein for H-, N-, K-, R-Ras and TC21/R-Ras2 proteins. We demonstrate that Schwann cells derived from Nf1-null mice have enhanced chemokinetic and chemotactic migration in comparison to wild-type controls. Surprisingly, this migratory phenotype is not inhibited by a farnesyltransferase inhibitor or dominant-negative (dn) (N17)H-Ras (which inhibits H-, N-, and K-Ras activation). We postulated that increased activity of R-Ras and/or TC21/R-Ras2, due to loss of Nf1, contributes to increased migration. Mouse Schwann cells (MSCs) express R-Ras and TC21/R-Ras2 and their specific guanine exchange factors, C3G and AND-34. Infection of Nf1-null MSCs with a dn(43N)R-Ras adenovirus (to inhibit both R-Ras and TC21/R-Ras2 activation) decreases migration by approximately 50%. Conversely, expression of activated (72L)TC21/R-Ras2, but not activated (38V)R-Ras, increases migration, suggesting a role of TC21/R-Ras2 activation in the migration of neurofibromin-deficient Schwann cells. TC21/R-Ras2 preferentially couples to the phosphatidylinositol 3-kinase (PI3-kinase) and MAP kinase pathways. Treatment with a PI3-kinase or MAP kinase inhibitor reduces Nf1-null Schwann cell migration, implicating these TC21 effectors in Schwann cell migration. These data reveal a key role for neurofibromin regulation of TC21/R-Ras2 in Schwann cells, a cell type critical to NF1 tumor pathogenesis

    The Delphi Delirium Management Algorithms. A practical tool for clinicians, the result of a modified Delphi expert consensus approach

    Get PDF
    Delirium is common in hospitalised patients, and there is currently no specific treatment. Identifying and treating underlying somatic causes of delirium is the first priority once delirium is diagnosed. Several international guidelines provide clinicians with an evidence-based approach to screening, diagnosis and symptomatic treatment. However, current guidelines do not offer a structured approach to identification of underlying causes. A panel of 37 internationally recognised delirium experts from diverse medical backgrounds worked together in a modified Delphi approach via an online platform. Consensus was reached after five voting rounds. The final product of this project is a set of three delirium management algorithms (the Delirium Delphi Algorithms), one for ward patients, one for patients after cardiac surgery and one for patients in the intensive care unit.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Delphi Delirium Management Algorithms: A practical tool for clinicians, the result of a modified Delphi expert consensus approach

    Get PDF
    Delirium is common in hospitalised patients, and there is currently no specific treatment. Identifying and treating underlying somatic causes of delirium is the first priority once delirium is diagnosed. Several international guidelines provide clinicians with an evidence-based approach to screening, diagnosis and symptomatic treatment. However, current guidelines do not offer a structured approach to identification of underlying causes. A panel of 37 internationally recognised delirium experts from diverse medical backgrounds worked together in a modified Delphi approach via an online platform. Consensus was reached after five voting rounds. The final product of this project is a set of three delirium management algorithms (the Delirium Delphi Algorithms), one for ward patients, one for patients after cardiac surgery and one for patients in the intensive care unit
    • 

    corecore