84 research outputs found

    Notes on the blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) in Cameroon

    Get PDF
    Background: The invasive mosquito Aedes albopictus is often considered a poor vector of human pathogens, owing to its catholic feeding behavior. However, it was recently incriminated as a major vector in several Chikungunya epidemics, outside of its native range. Here we assessed two key elements of feeding behavior by Ae. albopictus females in Yaounde, Cameroon, Central Africa. Host preference was explored and the human-biting activity of females was monitored over 24 h to determine periods of maximum bite exposure. Findings: Analysis of ingested blood in outdoor-resting females showed that Ae. albopictus preferentially fed on humans rather than on available domestic animals (95% of the blood meals contained human blood). Our results further showed that Ae. albopictus is a day-biting species in Yaounde, with a main peak of activity in the late afternoon. Conclusion: This is the first report on the feeding behavior of Ae. albopictus in Central Africa. The species is highly aggressive to humans and might therefore be involved in human-human virus transmission in this setting

    Rift Valley Fever Virus Circulating among Ruminants, Mosquitoes and Humans in the Central African Republic

    Get PDF
    Background Rift Valley fever virus (RVFV) causes a viral zoonosis, with discontinuous epizootics and sporadic epidemics, essentially in East Africa. Infection with this virus causes severe illness and abortion in sheep, goats, and cattle as well as other domestic animals. Humans can also be exposed through close contact with infectious tissues or by bites from infected mosquitoes, primarily of the Aedes and Culex genuses. Although the cycle of RVFV infection in savannah regions is well documented, its distribution in forest areas in central Africa has been poorly investigated. Methodology/Principal Findings To evaluate current circulation of RVFV among livestock and humans living in the Central African Republic (CAR), blood samples were collected from sheep, cattle, and goats and from people at risk, such as stock breeders and workers in slaughterhouses and livestock markets. The samples were tested for anti-RVFV immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies. We also sequenced the complete genomes of two local strains, one isolated in 1969 from mosquitoes and one isolated in 1985 from humans living in forested areas. The 1271 animals sampled comprised 727 cattle, 325 sheep, and 219 goats at three sites. The overall seroprevalence of anti-RVFV IgM antibodies was 1.9% and that of IgG antibodies was 8.6%. IgM antibodies were found only during the rainy season, but the frequency of IgG antibodies did not differ significantly by season. No evidence of recent RVFV infection was found in 335 people considered at risk; however, 16.7% had evidence of past infection. Comparison of the nucleotide sequences of the strains isolated in the CAR with those isolated in other African countries showed that they belonged to the East/Central African cluster. Conclusion and significance This study confirms current circulation of RVFV in CAR. Further studies are needed to determine the potential vectors involved and the virus reservoirs

    Nationwide profiling of insecticide resistance in Aedes albopictus (Diptera: Culicidae) in Cameroon

    Get PDF
    The Asian mosquito, Aedes albopictus (Skuse), is an invasive mosquito which has become one of the most important vectors of dengue, Zika, and chikungunya viruses worldwide. This species was reported for the first time in Cameroon in early 2000s and became the dominant Aedes species in the urban areas in the southern part of Cameroon but remain poorly characterized. Here, we assessed the susceptibility profile of A. albopictus collected throughout Cameroon and investigated the potential resistance mechanisms involved. Immature stages of A. albopictus were collected between March and July 2017 in 15 locations across Cameroon and reared until G1/G2 generation. Larval, adult bioassays, and synergists [piperonyl butoxide (PBO) and diethyl maleate (DEM)] assays were carried out according to WHO recommendations. F1534C mutation was genotyped in field collected adults (Go) using allele specific PCR. All tested populations were susceptible to both larvicides, temephos and Bacillus thuringiensis israelensis (Bti), after larval bioassays. Adult bioassays revealed a high level of resistance of A. albopictus to 4% DDT with mortality rates ranging from 12.42% in Bafang to 75.04% in Kumba. The resistance was reported also in 0.05% deltamethrin, 0.25% permethrin, and 0.1% propoxur in some locations. A loss of susceptibility to 0.1% bendiocarb was found in one of three populations analysed. A full susceptibility to 1% fenitrothion were observed across the country. A full recovery or partial of susceptibility was observed in A. albopictus when pre-exposed to PBO or DEM and then to DDT and permethrin, respectively. The F1534C kdr mutation was not detected in A. albopictus. This study showed that the susceptibility profile of A. albopictus to insecticide vary according to the sampling location and insecticides used. These findings are useful to planning vector control program against arbovirus vectors in Cameroon and can be used as baseline data for further researches

    Patterns of Ecological Adaptation of Aedes aegypti and Aedes albopictus and Stegomyia Indices Highlight the Potential Risk of Arbovirus Transmission in Yaoundé, the Capital City of Cameroon

    Get PDF
    The dynamic of arbovirus vectors such as Aedes aegypti and Ae. albopictus remains poorly understood in large cities in central Africa. Here, we compared the larval ecology, geographical distribution and degree of infestation of Ae. aegypti and Ae. albopictus in Yaoundé, the capital city of Cameroon, and estimated their Stegomyia indices revealing a significant potential risk of arbovirus transmission. An entomological survey was conducted in April–May 2018 in a cluster of houses randomly selected. Each selected house was inspected, the number of inhabitants was recorded, and potential and positive containers for Aedes were characterized. Stegomyia and pupae-based indices were estimated. Overall, 447 houses and 954 containers were inspected comprising 10,801 immature stages of Aedes with 84.95% of Ae. albopictus and 15.05% of Ae. aegypti. Both species bred mainly in discarded tanks and used tyres, associated with turbid water and the presence of plant debris inside containers. Aedes albopictus was the most prevalent species in almost all neighbourhoods. The house index, Breteau index, and container index were higher for Ae. albopictus (38.26%, 71.81%, and 29.61%) compared to those of Ae. aegypti (25.73%, 40.93%, and 16.88%). These indices are high compared to the thresholds established by Pan American Health Organization and World Health Organization, which suggests a high potential risk of arbovirus transmission

    Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aedes aegypti </it>(Linnaeus, 1762) and <it>Aedes albopictus </it>(Skuse, 1894) are the main vectors of dengue (DENV) and chikungunya (CHIKV) viruses worldwide. As there is still no vaccine or specific treatment for DENV and CHIKV, vector control remains the cornerstone of prevention and outbreak control. Unfortunately, vector control programs are facing operational challenges with mosquitoes becoming resistant to commonly used insecticides in several areas through the world. Throughout Central Africa no recent data are available susceptible/resistant status of either vector species since the introduction/arrival of <it>Ae. albopictus </it>in this area. We therefore studied the level of resistance of these two major vectors to insecticides commonly used in Africa for mosquito control.</p> <p>Results</p> <p><it>Aedes aegypti </it>and <it>Ae. albopictus </it>were sampled in six urban localities of Cameroon (Garoua, Bertoua, Yaoundé, Bafia, Buea) and Gabon (Libreville). Larval bioassays, carried out to determine the lethal concentrations (LC<sub>50 </sub>and LC<sub>95</sub>) and resistance ratios (RR<sub>50 </sub>and RR<sub>95</sub>) suggested that both vector species were susceptible to <it>Bti </it>(<it>Bacillus thuringiensis var israeliensis</it>) and temephos. Bioassays were also performed on adults using WHO diagnostic test kits to assess phenotypic resistance to deltamethrin, DDT, fenitrothion and propoxur. These experiments showed that one population of <it>Ae. aegypti </it>(Libreville) and two populations of <it>Ae. albopictus </it>(Buea and Yaoundé) were resistant to DDT (mortality 36% to 71%). Resistance to deltamethrin was also suspected in <it>Ae. albopictus </it>from Yaoundé (83% mortality). All other field mosquito populations were susceptible to deltamethrin, DDT, fenitrothion and propoxur. No increase in the knockdown times (Kdt<sub>50 </sub>and Kdt<sub>95</sub>) was noted in the Yaoundé resistant population compared to other <it>Ae. albopictus </it>populations, suggesting the possible involvement of metabolic resistance to deltamethrin and DDT.</p> <p>Conclusion</p> <p>In view of the recent increase in dengue and chikungunya outbreaks in Central Africa, these unique comparative data on the insecticide susceptibility of <it>Ae. aegypti </it>and <it>Ae. albopictus </it>could help public health services to design more effective vector control measures.</p

    Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo.

    Get PDF
    BACKGROUND Invasive mosquito species, such as Aedes albopictus in Congo can affect the distribution of native species, changing the vector composition and pattern of disease transmission. Here, we comparatively establish the geographical distribution and larval habitat preference of Ae. aegypti and Ae. albopictus and the risk of arbovirus disease outbreaks using Stegomyia indices in the city of Brazzaville, the capital of the Republic of the Congo. METHODS Human dwelling surveys of water-holding containers for immature stages of Aedes was carried out in December 2017 in Brazzaville through a random cluster sampling method. A total of 268 human dwellings distributed in 9 boroughs and 27 neighbourhoods were surveyed across the city. RESULTS Overall, 455 potential larval habitats were surveyed. Both Ae. aegypti and Ae. albopictus were collected across the city with an overall high prevalence of Ae. aegypti (53.1%) compared to Ae. albopictus (46.9%). Geographical distribution analysis showed that Ae. aegypti was more abundant (mean = 6.6 ± 1.4) in neighbourhoods located in downtown, while the abundance of Ae. albopictus was low (mean = 3.5 ± 0.6) in suburbs. Peridomestic containers, especially discarded tanks, were the most strongly colonized productive larval habitat for both mosquito species with the prevalence of 56.4% and 53.1% for Ae. aegypti and Ae. albopictus, respectively. Globally, the house index (HI), Breteau index (BI) and container index (CI) were high for Ae. aegypti (26.6%, 38.4% and 22.6%) and Ae. albopictus (33.3%, 49.6% and 26.6%) compared to the transmission risk threshold (5%, 5% and 20%) established by the WHO/PAHO. Overall, pupae-based indices (the pupae index and the pupae per person index) were not significantly different between Ae. aegypti (273.4% and 23.2%) and Ae. albopictus (228.8% and 19.5%). CONCLUSIONS The findings of this study suggest a high risk for transmission of arbovirus diseases in Brazzaville and call for an urgent need to implement vector control strategies against these vectors in the Republic of the Congo

    Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa

    Get PDF
    Background: In the Republic of Congo, with two massive outbreaks of Chikungunya observed this decade, little is known about the insecticide resistance profile of the two major arbovirus vectors Aedes aegypti and Aedes albopictus. Here, we established the resistance profile of both species to insecticides and explored the resistance mechanisms to help Congo to better prepare for future outbreaks. Methods: Immature stages of Ae. aegypti and Ae. albopictus were sampled in May 2017 in eight cities of the Republic of the Congo and reared to adult stage. Larval and adult bioassays, and synergist [piperonyl butoxide (PBO)] assays were carried out according to WHO guidelines. F1534C mutation was genotyped in field collected adults in both species and the polymorphism of the sodium channel gene assessed in Ae. aegypti. Results: All tested populations were susceptible to temephos after larval bioassays. A high resistance level was observed to 4% DDT in both species countrywide (21.9–88.3% mortality). All but one population (Ae. aegypti from Ngo) exhibited resistance to type I pyrethroid, permethrin, but showed a full susceptibility to type Ⅱ pyrethroid (deltamethrin) in almost all locations. Resistance was also reported to 1% propoxur in Ae. aegypti likewise in two Ae. albopictus populations (Owando and Ouesso), and the remaining were fully susceptible. All populations of both species were fully susceptible to 1% fenitrothion. A full recovery of susceptibility was observed in Ae. aegypti and Ae. albopictus when pre-exposed to PBO and then to propoxur and permethrin respectively. The F1534C kdr mutation was not detected in either species. The high genetic variability of the portion of sodium channel spanning the F1534C in Ae. aegypti Conclusions: Our study showed that both Aedes species were susceptible to organophosphates (temephos and fenitrothion), while for other insecticide classes tested the profile of resistance vary according to the population origin. These findings could help implement better and efficient strategies to control these species in the Congo in the advent of future arbovirus outbreaks

    Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile patients in Cameroon

    Get PDF
    Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5’ and 3’ UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region

    Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo [version 1; referees: 2 approved]

    Get PDF
    Background: The arbovirus vector, Aedes albopictus, originating from Asia, has recently invaded African countries, including the Republic of the Congo, where it was associated with a chikungunya outbreak. Up until now, little was known about its distribution in relation to the native Aedes aegypti and how the invasion will modify the epidemiology of arboviral diseases. Here, we assessed the current distribution of Ae. albopictus and Ae. aegypti in the Republic of the Congo and explored the genetic diversity of the invading species, Ae. albopictus. Methods: Immature stages of Aedes were collected in nine locations in the Republic of the Congo in 2017 following a north-south transect and reared to adult stage. Adults were morphologically identified, counted and grouped according to species and location. Genetic diversity of Ae. albopictus was assessed by analyzing the cytochrome oxidase I (COI) gene. Results: Ae. albopictus and Ae. aegypti were found together across the country in all the locations investigated. The invasive species is predominant over the native species in all locations except Brazzaville, suggesting that Ae. albopictus is displacing Ae. aegypti across Congo. When comparing the species distributions across the two largest cities, Brazzaville and Pointe Noire, Ae. albopictus was more prevalent than Ae. aegypti in the suburbs whereas the opposite situation was reported in the city centre. Mitochondrial DNA analysis revealed very low genetic diversity of Ae. albopictus with only three haplotypes recorded across the country supporting the recent introduction of this species in the Republic of the Congo. Phylogenetic tree analysis revealed that Ae. albopictus from Congo originated from other tropical Asian countries such as China, likely as a result of increasing trade links. Conclusion: These findings are important for the implementation of vector control strategies and can serve as a foundation for further research on these vectors in the country

    Spatial distribution and insecticide resistance profile of Aedes aegypti and Aedes albopictus in Douala, the most important city of Cameroon

    Get PDF
    Prevention and control of Aedes-borne viral diseases such as dengue rely on vector control, including the use of insecticides and reduction of larval sources. However, this is threatened by the emergence of insecticide resistance. This study aimed to update the spatial distribution, the insecticide resistance profile of A. aegypti and A. albopictus and the potential resistant mechanisms implicated in the city of Douala. Immature stages of Aedes were collected in August 2020 in eight neighbourhoods in Douala and reared to adult stages. Adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization recommendations. Expression of some candidate metabolic genes including Cyp9M6F88/87, Cyp9J28a, Cyp9J10 and Cyp9J32 in A. aegypti, and Cyp6P12 in A. albopictus were assessed using qPCR. A. aegypti adults G0 were screened using real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Overall, A. aegypti is the predominant Aedes species, but analyses revealed that both A. albopictus and A. aegypti coexist in all the prospected neighbourhoods of Douala. High level of resistance was observed to three pyrethroids tested in both Aedes species. In A. aegypti a lower mortality rate was reported to permethrin (5.83%) and a higher mortality rate to deltamethrin (63.74%). Meanwhile, for A. albopictus, lower (6.72%) and higher (84.11%) mortality rates were reported to deltamethrin. Similar analysis with bendiocarb, revealed for A. aegypti a loss of susceptibility. However, in A. albopictus samples, analyses revealed a susceptibility in Logbessou, and confirmed resistance in Kotto (59.78%). A partial recovery of mortality was found to insecticides after pre-exposure to PBO. Cyp6P12 was found significantly overexpressed in A. albopictus permethrin resistant and Cyp9M6F88/87 for A. aegypti deltamethrin resistant. F1534C, V1016I and V410L mutations were detected in A. aegypti from different neighbourhoods and by considering the combination of these three kdr 14 genotypes were found. These findings provide relevant information which should be capitalised in the implementation of arbovirus vector control strategies and insecticide resistance management
    • …
    corecore