43 research outputs found
Deficiency of dietary fiber in Slc5a8-null mice promotes bacterial dysbiosis and alters colonic epithelial transcriptome towards proinflammatory milieu
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the intestinal tract due to disruption of the symbiotic relationship between the host immune system and microbiota. Various factors alter the gut microbiota which lead to dysbiosis; in particular, diet and dietary fibers constitute important determinants. Dietary fiber protects against IBD; bacteria ferment these dietary fibers in colon and generate short-chain fatty acids (SCFAs), which mediate the anti-inflammatory actions of dietary fibers. SLC5A8 is a high-affinity transporter in the apical membrane of colonic epithelium which mediates the entry of SCFAs from the lumen into cells in Na+-coupled manner. Due to the unique transport kinetics, the function of the transporter becomes important only under conditions of low dietary fiber intake. Here, we have examined the impact of dietary fiber deficiency on luminal microbial composition and transcriptomic profile in colonic epithelium in wild-type (WT) and Slc5a8-null (KO) mice. We fed WT and KO mice with fiber-containing diet (FC-diet) or fiber-free diet (FF-diet) and analyzed the luminal bacterial composition by sequencing 16S rRNA gene in feces. Interestingly, results showed significant differences in the microbial community depending on dietary fiber content and on the presence or absence of Slc5a8. There were also marked differences in the transcriptomic profile of the colonic epithelium depending on the dietary fiber content and on the presence or absence of Slc5a8. We conclude that absence of fiber in diet in KO mice causes bacterial dysbiosis and alters gene expression in the colon that is conducive for inflammation
Gene expression profiling in peanut using high density oligonucleotide microarrays
<p>Abstract</p> <p>Background</p> <p>Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology.</p> <p>Results</p> <p>We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes.</p> <p>Conclusion</p> <p>The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues.</p
Recommended from our members
Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone
Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure
Generation and analysis of expressed sequence tags (ESTs) for marker development in yam (Dioscorea alata L.)
<p>Abstract</p> <p>Background</p> <p>Anthracnose (<it>Colletotrichum </it><it>gloeosporioides</it>) is a major limiting factor in the production of yam (<it>Dioscorea </it>spp.) worldwide. Availability of high quality sequence information is necessary for designing molecular markers associated with resistance. However, very limited sequence information pertaining to yam is available at public genome databases. Therefore, this collaborative project was developed for genetic improvement and germplasm characterization of yams using molecular markers. The current investigation is focused on studying gene expression, by large scale generation of ESTs, from one susceptible (TDa 95-0310) and two resistant yam genotypes (TDa 87-01091, TDa 95-0328) challenged with the fungus. Total RNA was isolated from young leaves of resistant and susceptible genotypes and cDNA libraries were sequenced using Roche 454 technology.</p> <p>Results</p> <p>A total of 44,757 EST sequences were generated from the cDNA libraries of the resistant and susceptible genotypes. Greater than 56% of ESTs were annotated using MapMan Mercator tool and Blast2GO search tools. Gene annotations were used to characterize the transcriptome in yam and also perform a differential gene expression analysis between the resistant and susceptible EST datasets. Mining for SSRs in the ESTs revealed 1702 unique sequences containing SSRs and 1705 SSR markers were designed using those sequences.</p> <p>Conclusion</p> <p>We have developed a comprehensive annotated transcriptome data set in yam to enrich the EST information in public databases. cDNA libraries were constructed from anthracnose fungus challenged leaf tissues for transcriptome characterization, and differential gene expression analysis. Thus, it helped in identifying unique transcripts in each library for disease resistance. These EST resources provide the basis for future microarray development, marker validation, genetic linkage mapping and QTL analysis in <it>Dioscorea </it>species.</p
Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress.
Although several metallic elements are required for plant growth, excessive amounts of aluminum ions (Al3+) can result in the inhibition of root growth, thus triggering water and nutrient deficiencies. Plants under stress undergo gene expression changes in specific genes or post-transcriptional gene regulators, such as miRNAs, that can lead to stress tolerance. In this study, we investigated the miRNAs involved in the response of sugarcane to aluminum stress. Four miRNA libraries were generated using sugarcane roots of one tolerant and one sensitive sugarcane cultivar grown under aluminum stress and used to identify the miRNAs involved in the sugarcane aluminum toxicity response. The contrast in field phenotypes of sugarcane cultivars in the field during aluminum stress was reflected in the micro-transcriptome expression profiles. We identified 394 differentially expressed miRNAs in both cultivars, 104 of which were tolerant cultivar-specific, 116 were sensitive cultivar-specific, and 87 of which were common among cultivars. In addition, 52% of differentially expressed miRNAs were upregulated in the tolerant cultivar while the majority of differentially expressed miRNAs in the sensitive cultivar were downregulated. Real-time quantitative polymerase chain reaction was used to validate the expression levels of differentially expressed miRNAs. We also attempted to identify target genes of miRNAs of interest. Our results show that selected differentially expressed miRNAs of aluminum-stressed sugarcane cultivars play roles in signaling, root development, and lateral root formation. These genes thus may be important for aluminum tolerance in sugarcane and could be used in breeding programs to develop tolerant cultivars
The Wnt non-canonical signaling modulates cabazitaxel sensitivity in prostate cancer cells.
BACKGROUND:Despite new drugs, metastatic prostate cancer remains fatal. Growing interest in the latest approved cabazitaxel taxane drug has markedly increased due to the survival benefits conferred when used at an earlier stage of the disease, its promising new therapeutic combination and formulation, and its differential toxicity. Still cabazitaxel's mechanisms of resistance are poorly characterized. The goal of this study was thus to generate a new model of acquired resistance against cabazitaxel in order to unravel cabazitaxel's resistance mechanisms. METHODS:Du145 cells were cultured with increasing concentrations of cabazitaxel, docetaxel/ taxane control or placebo/age-matched control. Once resistance was reached, Epithelial-to-Mesenchymal Translation (EMT) was tested by cell morphology, cell migration, and E/M markers expression profile. Cell transcriptomics were determined by RNA sequencing; related pathways were identified using IPA, PANTHER or KEGG software. The Wnt pathway was analyzed by western blotting, pharmacological and knock-down studies. RESULTS:While age-matched Du145 cells were sensitive to both taxane drugs, docetaxel-resistant cells were only resistant to docetaxel and cabazitaxel-resistant cells showed a partial cross-resistance to both drugs concomitant to EMT. Using RNA-sequencing, the Wnt non-canonical pathway was identified as exclusively activated in cabazitaxel resistant cells while the Wnt canonical pathway was restricted to docetaxel-resistant cells. Cabazitaxel-resistant cells showed a minimal crossover in the Wnt-pathway-related genes linked to docetaxel resistance validating our unique model of acquired resistance to cabazitaxel. Pharmacological and western blot studies confirmed these findings and suggest the implication of the Tyrosine kinase Ror2 receptor in cabazitaxel resistant cells. Variation in Ror2 expression level altered the sensitivity of prostate cancer cells to both drugs identifying a possible new target for taxane resistance. CONCLUSION:Our study represents the first demonstration that while Wnt pathway seems to play an important role in taxanes resistance, Wnt effectors responsible for taxane specificity remain un-identified prompting the need for more studies
Shotgun label-free quantitative proteomics of water-deficit-stressed midmature peanut (Arachis hypogaea L.) seed
Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. A comprehensive understanding of seed metabolism and the effects of water-deficit stress on the incorporation of the main storage reserves in seeds, such as proteins, fatty acids, starch, and secondary metabolites, will enhance our ability to improve seed quality and yield through molecular breeding programs. In the present study, we employed a label-free quantitative proteomics approach to study the functional proteins altered in the midmature (65-70 days postanthesis) peanut seed grown under water-deficit stress conditions. We created a pod-specific proteome database and identified 93 nonredundant, statistically significant, and differentially expressed proteins between well-watered and drought-stressed seeds. Mapping of these differential proteins revealed three candidate biological pathways (glycolysis, sucrose and starch metabolism, and fatty acid metabolism) that were significantly altered due to water-deficit stress. Differential accumulation of proteins from these pathways provides insight into the molecular mechanisms underlying the observed physiological changes, which include reductions in pod yield and biomass, reduced germination, reduced vigor, decreased seed membrane integrity, increase in storage proteins, and decreased total fatty acid content. Some of the proteins encoding rate limiting enzymes of biosynthetic pathways could be utilized by breeders to improve peanut seed production during water-deficit conditions in the field. The data have been deposited to the ProteomeXchange with identifier PXD000308.10 page(s
Major Transcriptome Changes Accompany the Growth of Pseudomonas aeruginosa in Blood from Patients with Severe Thermal Injuries.
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. After multiplying within the burn wound, P. aeruginosa translocate into the bloodstream causing bacterial sepsis frequently leading to organ dysfunction and septic shock. Although the pathogenesis of P. aeruginosa infection of thermally-injured wounds has been extensively analyzed, little is known regarding the ability of P. aeruginosa to adapt and survive within the blood of severely burned patients during systemic infection. To identify such adaptations, transcriptome analyses (RNA-seq) were conducted on P. aeruginosa strain PA14 that was grown in whole blood from a healthy volunteer or three severely burned patients. Compared with growth in blood from healthy volunteers, growth of PA14 in the blood from severely burned patients significantly altered the expression of 2596 genes, with expression of 1060 genes enhanced, while that of 1536 genes was reduced. Genes whose expression was significantly reduced included genes related to quorum sensing, quorum sensing-controlled virulence factors and transport of heme, phosphate, and phosphonate. Genes whose expression was significantly enhanced were related to the type III secretion system, the pyochelin iron-acquisition system, flagellum synthesis, and pyocyanin production. We confirmed changes in expression of many of these genes using qRT-PCR. Although severe burns altered the levels of different blood components in each patient, the growth of PA14 in their blood produced similar changes in the expression of each gene. These results suggest that, in response to changes in the blood of severely burned patients and as part of its survival strategy, P. aeruginosa enhances the expression of certain virulence genes and reduces the expression of others
Sm-p80-based schistosomiasis vaccine mediated epistatic interactions identified potential immune signatures for vaccine efficacy in mice and baboons.
Schistosomiasis is a neglected parasitic disease of major public health concern as it affects over 250 million people in developing countries. Currently there is no licensed vaccine available against schistosomiasis. The Schistosoma mansoni calpain protein, Sm-p80, is a leading vaccine candidate now ready to move to clinical trials. In order to better assess Sm-p80 vaccine immunogenicity; here we used a systems biology approach employing RNA-sequencing to identify gene signatures and epistatic interactions following Sm-p80 vaccination in mouse and baboon models that may predict vaccine efficacy. Recombinant Sm-p80 + CpG-oligodeoxynucleotide (ODN) vaccine formulation induced both cellular and humoral immunity genes with a predominant TH1 response as well as TH2 and TH17 gene signatures. Early gene responses and gene-network interactions in mice immunized with rSm-p80 + ODN appear to be initiated through TLR4 signaling. CSF genes, S100A alarmin genes and TNFRSF genes appear to be a signature of vaccine immunogenicity/efficacy as identified by their participation in gene network interactions in both mice and baboons. These gene families may provide a basis for predicting desirable outcomes for vaccines against schistosomiasis leading to a better understanding of the immune system response to vaccination
List of proteins that showed more than 2-fold increase in <i>Bd</i> exposed to T<sub>3</sub>.
<p>Statistically significant expression at P <0.05.</p><p>The values are given as T<sub>3</sub> normalized spectral count (N-SC) Log<sub>2</sub> relative expression.</p><p>To calculate the absolute fold change, the conversion is applied as 2^ (T<sub>3</sub> N-SC).</p><p><sup>a</sup>As given according to the <a href="http://www.broadinstitute.org" target="_blank">www.broadinstitute.org</a>.</p><p>List of proteins that showed more than 2-fold increase in <i>Bd</i> exposed to T<sub>3</sub>.</p