91 research outputs found
Evolution of the optical spectrum of SN 1987a in the large magellanic cloud
The evolution of the spectrum of SN1987a is traced from 1987 February 26 to March 31. Based on the low-resolution spectroscopic data we identify the lines of H, He I, Na I, Fe II, Sc II, Ca II which are known to be present in Type II Supernovae, and also present evidence for the existence of lines of Mg I, CaI, O I, and N I. We discuss the evolution of the Hα profile, and draw attention to its complex structure around March 30. Close to the rest wavelength of Ha a double-peaked structure appeared in the profile with a peak-to-peak separation of ~ 1400 km s−1, suggestive of an expanding shell or disc of gas. Using the available broadband photometric information, we also trace the evolution of the photosphere of SN1987a assuming that it radiates like a supergiant
The Double Dust Envelopes of R Coronae Borealis Stars
The study of extended, cold dust envelopes surrounding R Coronae Borealis (RCB) stars began with their discovery by the Infrared Astronomical Satellite. RCB stars are carbon-rich supergiants characterized by their extreme hydrogen deficiency and their irregular and spectacular declines in brightness (up to 9 mag). We have analyzed new and archival Spitzer Space Telescope and Herschel Space Observatory data of the envelopes of seven RCB stars to examine the morphology and investigate the origin of these dusty shells. Herschel, in particular, has revealed the first-ever bow shock associated with an RCB star with its observations of SU Tauri. These data have allowed the assembly of the most comprehensive spectral energy distributions (SEDs) of these stars with multiwavelength data from the ultraviolet to the submillimeter. Radiative transfer modeling of the SEDs implies that the RCB stars in this sample are surrounded by an inner warm (up to 1200 K) and an outer cold (up to 200 K) envelope. The outer shells are suggested to contain up to 10-3 M o of dust and have existed for up to 105 years depending on the expansion rate of the dust. This age limit indicates that these structures have most likely been formed during the RCB phase
The evolutionary status of the semiregular variable QYSge
Repeated spectroscopic observations made with the 6m telescope of yielded new
data on the radial-velocity variability of the anomalous yellow supergiant
QYSge. The strongest and most peculiar feature in its spectrum is the complex
profile of NaI D lines, which contains a narrow and a very wide emission
components. The wide emission component can be seen to extend from -170 to +120
km/s, and at its central part it is cut by an absorption feature, which, in
turn, is split into two subcomponents by a narrow (16km/s at r=2.5) emission
peak. An analysis of all the Vr values leads us to adopt for the star a
systemic velocity of Vr=-21.1 km/s, which corresponds to the position of the
narrow emission component of NaI. The locations of emission-line features of
NaI D lines are invariable, which point to their formation in regions that are
external to the supergiant's photosphere. Differential line shifts of about
10km/s are revealed. The absorption lines in the spectrum of QYSge have a
substantial width of FWHM~45 km/s. The method of model atmospheres is used to
determine the following parameters: Teff=6250K, lg g=2.0, and microturbulence
Vt=4.5km/s. The metallicity of the star is found to be somewhat higher than the
solar one with an average overabundance of iron-peak elements of [Met/H]=+0.20.
The star is found to be slightly overabundant in carbon and nitrogen,
[C/Fe]=+0.25, [N/Fe]=+0.27. The alpha-process elements Mg, Si, and Ca are
slightly overabundant [alpha/H]=+0.12. The strong sodium excess, [Na/Fe]=+0.75,
is likely to be due to the dredge-up of the matter processed in the NeNa cycle.
Heavy elements of the s-process are underabundant relative to the Sun. On the
whole, the observed properties of QYSge do not give grounds for including this
star into the group of RCrB or RVTau-type type objects.Comment: 29 pages, 8 figures, 4 tables; accepted by Astrophys. Bulleti
Peculiarities and variations in the optical spectrum of the post-AGB star V448Lac=IRAS22223+4327
Repeated observations with high spectral resolution acquired in 1998-2008 are
used to study the temporal behavior of the spectral line profiles and velocity
field in the atmosphere and circumstellar envelope of the post-AGB star
V448Lac. Asymmetry of the profiles of the strongest absorption lines with
low-level excitation potentials less 1eV and time variations of these profiles
have been detected, most prominently the profiles of the resonance lines of
BaII, YII, LaII, SiII. The peculiarity of these profiles can be explained using
a superposition of stellar absorption line and shell emission lines. Emission
in the (0;1) 5635A Swan band of the C2 molecule has been detected in the
spectrum of V448Lac for the first time. The core of the Halpha line displays
radial velocity variations with an amplitude ~8 km/s. Radial velocity
variations displayed by weakest metallic lines with lower amplitudes, 1-2 km/s,
may be due to atmospheric pulsations. Differential line shifts, 0 -- 8 km/s,
have been detected on various dates. The position of the molecular spectrum is
stationary in time, indicating a constant expansion velocity of the
circumstellar shell, Vexp=15.2 km/s, as derived from the C2 and NaI lines.Comment: 19 pages, 8 figures, 1 tabl
- …