5,318 research outputs found
An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics
Biometric systems have to address many requirements, such as large population
coverage, demographic diversity, varied deployment environment, as well as
practical aspects like performance and spoofing attacks. Traditional unimodal
biometric systems do not fully meet the aforementioned requirements making them
vulnerable and susceptible to different types of attacks. In response to that,
modern biometric systems combine multiple biometric modalities at different
fusion levels. The fused score is decisive to classify an unknown user as a
genuine or impostor. In this paper, we evaluate combinations of score
normalization and fusion techniques using two modalities (fingerprint and
finger-vein) with the goal of identifying which one achieves better improvement
rate over traditional unimodal biometric systems. The individual scores
obtained from finger-veins and fingerprints are combined at score level using
three score normalization techniques (min-max, z-score, hyperbolic tangent) and
four score fusion approaches (minimum score, maximum score, simple sum, user
weighting). The experimental results proved that the combination of hyperbolic
tangent score normalization technique with the simple sum fusion approach
achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201
Using image morphing for memory-efficient impostor rendering on GPU
Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates
Augmenting conversations through context-aware multimedia retrieval based on speech recognition
Future’s environments will be sensitive and responsive to the presence of people to support them carrying out their everyday life activities, tasks and rituals, in an easy and natural way. Such interactive spaces will use the information and communication technologies to bring the computation into the physical world, in order to enhance ordinary activities of their users. This paper describes a speech-based spoken multimedia retrieval system that can be used to present relevant video-podcast (vodcast) footage, in response to spontaneous speech and conversations during daily life activities. The proposed system allows users to search the spoken content of multimedia files rather than their associated meta-information and let them navigate to the right portion where queried words are spoken by facilitating within-medium searches of multimedia content through a bag-of-words approach. Finally, we have studied the proposed system on different scenarios by using vodcasts in English from various categories, as the targeted multimedia, and discussed how it would enhance people’s everyday life activities by different scenarios including education, entertainment, marketing, news and workplace
A decision forest based feature selection framework for action recognition from RGB-Depth cameras
In this paper, we present an action recognition framework
leveraging data mining capabilities of random decision forests trained on
kinematic features. We describe human motion via a rich collection of
kinematic feature time-series computed from the skeletal representation
of the body in motion. We discriminatively optimize a random decision
forest model over this collection to identify the most effective subset
of features, localized both in time and space. Later, we train a support
vector machine classifier on the selected features. This approach improves
upon the baseline performance obtained using the whole feature set with
a significantly less number of features (one tenth of the original). On
MSRC-12 dataset (12 classes), our method achieves 94% accuracy. On
the WorkoutSU-10 dataset, collected by our group (10 physical exercise
classes), the accuracy is 98%. The approach can also be used to provide
insights on the spatiotemporal dynamics of human actions
GPU accelerated maximum cardinality matching algorithms for bipartite graphs
We design, implement, and evaluate GPU-based algorithms for the maximum
cardinality matching problem in bipartite graphs. Such algorithms have a
variety of applications in computer science, scientific computing,
bioinformatics, and other areas. To the best of our knowledge, ours is the
first study which focuses on GPU implementation of the maximum cardinality
matching algorithms. We compare the proposed algorithms with serial and
multicore implementations from the literature on a large set of real-life
problems where in majority of the cases one of our GPU-accelerated algorithms
is demonstrated to be faster than both the sequential and multicore
implementations.Comment: 14 pages, 5 figure
Multilevel Threshold Secret and Function Sharing based on the Chinese Remainder Theorem
A recent work of Harn and Fuyou presents the first multilevel (disjunctive)
threshold secret sharing scheme based on the Chinese Remainder Theorem. In this
work, we first show that the proposed method is not secure and also fails to
work with a certain natural setting of the threshold values on compartments. We
then propose a secure scheme that works for all threshold settings. In this
scheme, we employ a refined version of Asmuth-Bloom secret sharing with a
special and generic Asmuth-Bloom sequence called the {\it anchor sequence}.
Based on this idea, we also propose the first multilevel conjunctive threshold
secret sharing scheme based on the Chinese Remainder Theorem. Lastly, we
discuss how the proposed schemes can be used for multilevel threshold function
sharing by employing it in a threshold RSA cryptosystem as an example
- …