5,318 research outputs found

    An Evaluation of Score Level Fusion Approaches for Fingerprint and Finger-vein Biometrics

    Get PDF
    Biometric systems have to address many requirements, such as large population coverage, demographic diversity, varied deployment environment, as well as practical aspects like performance and spoofing attacks. Traditional unimodal biometric systems do not fully meet the aforementioned requirements making them vulnerable and susceptible to different types of attacks. In response to that, modern biometric systems combine multiple biometric modalities at different fusion levels. The fused score is decisive to classify an unknown user as a genuine or impostor. In this paper, we evaluate combinations of score normalization and fusion techniques using two modalities (fingerprint and finger-vein) with the goal of identifying which one achieves better improvement rate over traditional unimodal biometric systems. The individual scores obtained from finger-veins and fingerprints are combined at score level using three score normalization techniques (min-max, z-score, hyperbolic tangent) and four score fusion approaches (minimum score, maximum score, simple sum, user weighting). The experimental results proved that the combination of hyperbolic tangent score normalization technique with the simple sum fusion approach achieve the best improvement rate of 99.98%.Comment: 10 pages, 5 figures, 3 tables, conference, NISK 201

    Using image morphing for memory-efficient impostor rendering on GPU

    Get PDF
    Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates

    Augmenting conversations through context-aware multimedia retrieval based on speech recognition

    Get PDF
    Future’s environments will be sensitive and responsive to the presence of people to support them carrying out their everyday life activities, tasks and rituals, in an easy and natural way. Such interactive spaces will use the information and communication technologies to bring the computation into the physical world, in order to enhance ordinary activities of their users. This paper describes a speech-based spoken multimedia retrieval system that can be used to present relevant video-podcast (vodcast) footage, in response to spontaneous speech and conversations during daily life activities. The proposed system allows users to search the spoken content of multimedia files rather than their associated meta-information and let them navigate to the right portion where queried words are spoken by facilitating within-medium searches of multimedia content through a bag-of-words approach. Finally, we have studied the proposed system on different scenarios by using vodcasts in English from various categories, as the targeted multimedia, and discussed how it would enhance people’s everyday life activities by different scenarios including education, entertainment, marketing, news and workplace

    A decision forest based feature selection framework for action recognition from RGB-Depth cameras

    Get PDF
    In this paper, we present an action recognition framework leveraging data mining capabilities of random decision forests trained on kinematic features. We describe human motion via a rich collection of kinematic feature time-series computed from the skeletal representation of the body in motion. We discriminatively optimize a random decision forest model over this collection to identify the most effective subset of features, localized both in time and space. Later, we train a support vector machine classifier on the selected features. This approach improves upon the baseline performance obtained using the whole feature set with a significantly less number of features (one tenth of the original). On MSRC-12 dataset (12 classes), our method achieves 94% accuracy. On the WorkoutSU-10 dataset, collected by our group (10 physical exercise classes), the accuracy is 98%. The approach can also be used to provide insights on the spatiotemporal dynamics of human actions

    GPU accelerated maximum cardinality matching algorithms for bipartite graphs

    Get PDF
    We design, implement, and evaluate GPU-based algorithms for the maximum cardinality matching problem in bipartite graphs. Such algorithms have a variety of applications in computer science, scientific computing, bioinformatics, and other areas. To the best of our knowledge, ours is the first study which focuses on GPU implementation of the maximum cardinality matching algorithms. We compare the proposed algorithms with serial and multicore implementations from the literature on a large set of real-life problems where in majority of the cases one of our GPU-accelerated algorithms is demonstrated to be faster than both the sequential and multicore implementations.Comment: 14 pages, 5 figure

    Multilevel Threshold Secret and Function Sharing based on the Chinese Remainder Theorem

    Get PDF
    A recent work of Harn and Fuyou presents the first multilevel (disjunctive) threshold secret sharing scheme based on the Chinese Remainder Theorem. In this work, we first show that the proposed method is not secure and also fails to work with a certain natural setting of the threshold values on compartments. We then propose a secure scheme that works for all threshold settings. In this scheme, we employ a refined version of Asmuth-Bloom secret sharing with a special and generic Asmuth-Bloom sequence called the {\it anchor sequence}. Based on this idea, we also propose the first multilevel conjunctive threshold secret sharing scheme based on the Chinese Remainder Theorem. Lastly, we discuss how the proposed schemes can be used for multilevel threshold function sharing by employing it in a threshold RSA cryptosystem as an example
    corecore