A recent work of Harn and Fuyou presents the first multilevel (disjunctive)
threshold secret sharing scheme based on the Chinese Remainder Theorem. In this
work, we first show that the proposed method is not secure and also fails to
work with a certain natural setting of the threshold values on compartments. We
then propose a secure scheme that works for all threshold settings. In this
scheme, we employ a refined version of Asmuth-Bloom secret sharing with a
special and generic Asmuth-Bloom sequence called the {\it anchor sequence}.
Based on this idea, we also propose the first multilevel conjunctive threshold
secret sharing scheme based on the Chinese Remainder Theorem. Lastly, we
discuss how the proposed schemes can be used for multilevel threshold function
sharing by employing it in a threshold RSA cryptosystem as an example