35 research outputs found

    Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Sirolimus inhibits key events of restenosis in vitro/ex vivo: evaluation of the clinical relevance of the data by SI/MPL- and SI/DES-ratio's

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sirolimus (SRL, Rapamycin) has been used successfully to inhibit restenosis both in drug eluting stents (DES) and after systemic application. The current study reports on the effects of SRL in various human in vitro/ex vivo models and evaluates the theoretical clinical relevance of the data by SI/MPL- and SI/DES-ratio's.</p> <p>Methods</p> <p>Definition of the SI/MPL-ratio: relation between <b>s</b>ignificant <b>i</b>nhibitory effects in vitro/ex vivo and the <b>m</b>aximal <b>p</b>lasma <b>l</b>evel after systemic administration in vivo (6.4 ng/ml for SRL). Definition of the SI/DES-ratio: relation between <b>s</b>ignificant <b>i</b>nhibitory effects in vitro/ex vivo and the drug concentration in <b>DES </b>(7.5 mg/ml in the ISAR drug-eluting stent platform). Part I of the study investigated in cytoflow studies the effect of SRL (0.01–1000 ng/ml) on TNF-α induced expression of intercellular adhesion molecule 1 (ICAM-1) in human coronary endothelial cells (HCAEC) and human coronary smooth muscle cells (HCMSMC). Part II of the study analysed the effect of SRL (0.01–1000 ng/ml) on cell migration of HCMSMC. In part III, IV, and V of the study ex vivo angioplasty (9 bar) was carried out in a human organ culture model (HOC-model). SRL (50 ng/ml) was added for a period of 21 days, after 21 and 56 days cell proliferation, apoptosis, and neointimal hyperplasia was studied.</p> <p>Results</p> <p>Expression of ICAM-1 was significantly inhibited both in HCAEC (SRL ≥ 0.01 ng/ml) and HCMSMC (SRL ≥ 10 ng/ml). SRL in concentrations ≥ 0.1 ng/ml significantly inhibited migration of HCMSMC. Cell proliferation and neointimal hyperplasia was inhibited at day 21 and day 56, significance (p < 0.01) was achieved for the inhibitory effect on cell proliferation in the media at day 21. The number of apoptotic cells was always below 1%.</p> <p>Conclusion</p> <p>SI/MPL-ratio's ≤ 1 (ICAM-1 expression, cell migration) characterize inhibitory effects of SRL that can be theoretically expected both after systemic and local high dose administration, a SI/MPL-ratio of 7.81 (cell proliferation) represents an effect that was achieved with drug concentrations 7.81-times the MPL. SI/DES-ratio's between 10<sup>-6 </sup>and 10<sup>-8 </sup>indicate that the described inhibitory effects of SRL have been detected with micro to nano parts of the SRL concentration in the ISAR drug-eluting stent platform. Drug concentrations in DES will be a central issue in the future.</p

    Robust Ordering of Anaphase Events by Adaptive Thresholds and Competing Degradation Pathways

    No full text
    The splitting of chromosomes in anaphase and their delivery into the daughter cells needs to be accurately executed to maintain genome stability. Chromosome splitting requires the degradation of securin, whereas the distribution of the chromosomes into the daughter cells requires the degradation of cyclin B. We show that cells encounter and tolerate variations in the abundance of securin or cyclin B. This makes the concurrent onset of securin and cyclin B degradation insufficient to guarantee that early anaphase events occur in the correct order. We uncover that the timing of chromosome splitting is not determined by reaching a fixed securin level, but that this level adapts to the securin degradation kinetics. In conjunction with securin and cyclin B competing for degradation during anaphase, this provides robustness to the temporal order of anaphase events. Our work reveals how parallel cell-cycle pathways can be temporally coordinated despite variability in protein concentrations

    Large MOEMS diffraction grating results providing an EC-QCL wavelength scan of 20%

    No full text
    Experimental results of a large scanning grating with a diameter of 5mm and 1 kHz scan frequency are discussed. An optical diffraction grating is fabricated on a mirror single crystal silicon plate to scan the first diffraction order in the MIR-wavelength range over a quantum cascade laser facet. Special emphasis is on the development of the grating technology module to integrate it with high accuracy and reproducibility into the IPMS AME75 process flow. The principle EC-QCL setup with the scanning grating is described and first measurement results concerning laser output power and tuning range are presented

    Die Zielgruppe LOHAS

    No full text

    Determinants of robustness in spindle assembly checkpoint signalling.

    No full text
    The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling
    corecore