461 research outputs found

    A method for dynamic subtraction MR imaging of the liver

    Get PDF
    BACKGROUND: Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR) volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. METHODS: Nineteen consecutive patients (median age 45 years; range 37–67) were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm) acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a) rigid 3D translation using maximization of normalized mutual information (NMI), and (b) fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. RESULTS: The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test) and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p < 0.001, paired t-test) after non-rigid realignment. The overall average NMI increase was 31%. CONCLUSION: This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions

    Treatment Planning and Volumetric Response Assessment for Yttrium-90 Radioembolization: Semiautomated Determination of Liver Volume and Volume of Tumor Necrosis in Patients with Hepatic Malignancy

    Get PDF
    PurposeThe primary purpose of this study was to demonstrate intraobserver/interobserver reproducibility for novel semiautomated measurements of hepatic volume used for Yttrium-90 dose calculations as well as whole-liver and necrotic-liver (hypodense/nonenhancing) tumor volume after radioembolization. The secondary aim was to provide initial comparisons of tumor volumetric measurements with linear measurements, as defined by Response Evaluation Criteria in Solid Tumors criteria, and survival outcomes.MethodsBetween 2006 and 2009, 23 consecutive radioembolization procedures were performed for 14 cases of hepatocellular carcinoma and 9 cases of hepatic metastases. Baseline and follow-up computed tomography obtained 1 month after treatment were retrospectively analyzed. Three observers measured liver, whole-tumor, and tumor-necrosis volumes twice using semiautomated software.ResultsGood intraobserver/interobserver reproducibility was demonstrated (intraclass correlation [ICC] &gt; 0.9) for tumor and liver volumes. Semiautomated measurements of liver volumes were statistically similar to those obtained with manual tracing (ICC = 0.868), but they required significantly less time to perform (p &lt; 0.0001, ICC = 0.088). There was a positive association between change in linear tumor measurements and whole-tumor volume (p &lt; 0.0001). However, linear measurements did not correlate with volume of necrosis (p &gt; 0.05). Dose, change in tumor diameters, tumor volume, and necrotic volume did not correlate with survival (p &gt; 0.05 in all instances). However, Kaplan-Meier curves suggest that a &gt;10% increase in necrotic volume correlated with survival (p = 0.0472).ConclusionSemiautomated volumetric analysis of liver, whole-tumor, and tumor-necrosis volume can be performed with good intraobserver/interobserver reproducibility. In this small retrospective study, measurements of tumor necrosis were suggested to correlate with survival

    Diagnosing arrhythmogenic right ventricular cardiomyopathy by 2010 Task Force Criteria: clinical performance and simplified practical implementation

    Get PDF
    AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is diagnosed by a complex set of clinical tests as per 2010 Task Force Criteria (TFC). Avoiding misdiagnosis is crucial to prevent sudden cardiac death as well as unnecessary implantable cardioverter-defibrillator implantations. This study aims to validate the overall performance of the TFC in a real-world cohort of patients referred for ARVC evaluation. METHODS AND RESULTS: We included patients consecutively referred to our centres for ARVC evaluation. Patients were diagnosed by consensus of three independent clinical experts. Using this as a reference standard, diagnostic performance was measured for each individual criterion as well as the overall TFC classification. Of 407 evaluated patients (age 38 ± 17 years, 51% male), the expert panel diagnosed 66 (16%) with ARVC. The clinically observed TFC was false negative in 7/66 (11%) patients and false positive in 10/69 (14%) patients. Idiopathic outflow tract ventricular tachycardia was the most common alternative diagnosis. While the TFC performed well overall (sensitivity and specificity 92%), signal-averaged electrocardiogram (SAECG, P = 0.43), and several family history criteria (P ≥ 0.17) failed to discriminate. Eliminating these criteria reduced false positives without increasing false negatives (net reclassification improvement 4.3%, P = 0.019). Furthermore, all ARVC patients met at least one electrocardiogram (ECG) or arrhythmia criterion (sensitivity 100%). CONCLUSION: The TFC perform well but are complex and can lead to misdiagnosis. Simplification by eliminating SAECG and several family history criteria improves diagnostic accuracy. Arrhythmogenic right ventricular cardiomyopathy can be ruled out using ECG and arrhythmia criteria alone, hence these tests may serve as a first-line screening strategy among at-risk individuals

    Lobar and segmental liver atrophy associated with hilar cholangiocarcinoma and the impact of hilar biliary anatomical variants: a pictorial essay

    Get PDF
    The radiological features of lobar and segmental liver atrophy and compensatory hypertrophy associated with biliary obstruction are important to recognise for diagnostic and therapeutic reasons. Atrophied lobes/segments reduce in volume and usually contain crowded dilated bile ducts extending close to the liver surface. There is often a “step” in the liver contour between the atrophied and non-atrophied parts. Hypertrophied right lobe or segments enlarge and show a prominently convex or “bulbous” visceral surface. The atrophied liver parenchyma may show lower attenuation on pre-contrast computed tomography (CT) and CT intravenous cholangiography (CT-IVC) and lower signal intensity on T1-weighted magnetic resonance imaging (MRI). Hilar biliary anatomical variants can have an impact on the patterns of lobar/segmental atrophy, as the cause of obstruction (e.g. cholangiocarcinoma) often commences in one branch, leading to atrophy in that drainage region before progressing to complete biliary obstruction and jaundice. Such variants are common and can result in unusual but explainable patterns of atrophy and hypertrophy. Examples of changes seen with and without hilar variants are presented that illustrate the radiological features of atrophy/hypertrophy

    The Role of Body Mass Index, Insulin, and Adiponectin in the Relation Between Fat Distribution and Bone Mineral Density

    Get PDF
    Despite the positive association between body mass index (BMI) and bone mineral density (BMD) and content (BMC), the role of fat distribution in BMD/BMC remains unclear. We examined relationships between BMD/BMC and various measurements of fat distribution and studied the role of BMI, insulin, and adiponectin in these relations. Using a cross-sectional investigation of 2631 participants from the Erasmus Rucphen Family study, we studied associations between BMD (using dual-energy X-ray absorptiometry (DXA]) at the hip, lumbar spine, total body (BMD and BMC), and fat distribution by the waist-to-hip ratio (WHR), waist-to-thigh ratio (WTR), and DXA-based trunk-to-leg fat ratio and android-to-gynoid fat ratio. Analyses were stratified by gender and median age (48.0 years in women and 49.2 years in men) and were performed with and without adjustment for BMI, fasting insulin, and adiponectin. Using linear regression (adjusting for age, height, smoking, and use of alcohol), most relationships between fat distribution and BMD and BMC were positive, except for WTR. After BMI adjustment, most correlations were negative except for trunk-to-leg fat ratio in both genders. No consistent influence of age or menopausal status was found. Insulin and adiponectin levels did not explain either positive or negative associations. In conclusion, positive associations between android fat distribution and BMD/BMC are explained by higher BMI but not by higher insulin and/or lower adiponectin levels. Inverse associations after adjustment for BMI suggest that android fat deposition as measured by the WHR, WTR, and DXA-based android-to-gynoid fat ratio is not beneficial and possibly even deleterious for bone

    Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen

    Get PDF
    Background: To retrospectively and prospectively compare abdominal apparent diffusion coefficient (ADC) values obtained within in a 1.5 T system and 3 T systems with and without dual-source parallel RF excitation techniques. Methodology/Principal Findings: After IRB approval, diffusion-weighted (DW) images of the abdomen were obtained on three different MR systems (1.5 T, a first generation 3 T, and a second generation 3 T which incorporates dual-source parallel RF excitation) on 150 patients retrospectively and 19 volunteers (57 examinations total) prospectively. Seven regions of interest (ROI) were throughout the abdomen were selected to measure the ADC. Statistical analysis included independent two-sided t-tests, Mann-Whitney U tests and correlation analysis. In the DW images of the abdomen, mean ADC values were nearly identical with nonsignificant differences when comparing the 1.5 T and second generation 3 T systems in all seven anatomical regions in the patient population and six of the seven in the volunteer population (p.0.05 in all distributions). The strength of correlation measured in the volunteer population between the two scanners in the kidneys ranged from r = 0.64–0.88 and in the remaining regions (besides the spleen), r.0.85. In the patient population the first generation 3 T scanner had different mean ADC values with significant differences (p,0.05) compared to the other two scanners in each of the seven distributions. In the volunteer population, the kidneys shared similar ADC mean values in comparison to the other two scanners with nonsignificant differences

    Relevance of circulating nucleosomes and oncological biomarkers for predicting response to transarterial chemoembolization therapy in liver cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transarterial chemoembolization (TACE) therapy is an effective locoregional treatment in hepatocellular cancer (HCC) patients. For early modification of therapy, markers predicting therapy response are urgently required.</p> <p>Methods</p> <p>Here, sera of 50 prospectively and consecutively included HCC patients undergoing 71 TACE therapies were taken before and 3 h, 6 h and 24 h after TACE application to analyze concentrations of circulating nucleosomes, cytokeratin-19 fragments (CYFRA 21-1), alpha fetoprotein (AFP), C-reactive protein (CRP) and several liver biomarkers, and to compare these with radiological response to therapy.</p> <p>Results</p> <p>While nucleosomes, CYFRA 21-1, CRP and some liver biomarkers increased already 24 h after TACE, percental changes of nucleosome concentrations before and 24 h after TACE and pre- and posttherapeutic values of AFP, gamma-glutamyl-transferase (GGT) and alkaline phosphatase (AP) significantly indicated the later therapy response (39 progression versus 32 no progression). In multivariate analysis, nucleosomes (24 h), AP (24 h) and TACE number were independent predictive markers. The risk score of this combination model achieved an AUC of 81.8% in receiver operating characteristic (ROC) curves and a sensitivity for prediction of non-response to therapy of 41% at 97% specificity, and of 72% at 78% specificity.</p> <p>Conclusion</p> <p>Circulating nucleosomes and liver markers are valuable tools for early estimation of the efficacy of TACE therapy in HCC patients.</p

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration.

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIONS: LTVA events in patients with ARVC can be predicted by a novel simple prediction model using only 4 clinical predictors. Prior sustained VA and the extent of functional heart disease are not associated with subsequent LTVA events

    Perioperative outcome of laparoscopic left lateral liver resection is improved by using a bioabsorbable staple line reinforcement material in a porcine model

    Get PDF
    Hypothesis Laparoscopic liver surgery is significantly limited by the technical difficulty encountered during transection of substantial liver parenchyma, with intraoperative bleeding and bile leaks. This study tested whether the use of a bioabsorble staple line reinforcement material would improve outcome during stapled laparoscopic left lateral liver resection in a porcine model. Study design A total of 20 female pigs underwent stapled laparoscopic left lateral liver resection. In group A (n = 10), the stapling devices were buttressed with a bioabsorbable staple line reinforcement material. In group B (n = 10), standard laparoscopic staplers were used. Operative data and perioperative complications were recorded. Necropsy studies and histopathological analysis were performed at 6 weeks. Data were compared between groups with the Student's t-test or the chi-square test. Results Operating time was similar in the two groups (64 +/- 11 min in group A versus 68 +/- 9 min in group B, p = ns). Intraoperative blood loss was significantly higher in group B (185 +/- 9 mL versus 25 +/- 5 mL, p <0.05). There was no mortality. There was no morbidity in the 6-week follow-up period; however, two animals in group B had subphrenic bilomas (20%) at necropsy. At necropsy, methylene blue injection via the main bile duct revealed leakage from the biliary tree in four animals in group B and none in group A (p <0.05). Histopathological examination of the resection site revealed minor abnormalities in group A while animals in group B demonstrated marked fibrotic changes and damaged vascular and biliary endothelium. Conclusion Use of a bioabsorbable staple line reinforcement material reduces intraoperative bleeding and perioperative bile leaks during stapled laparoscopic left lateral liver resection in a porcine model

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    Aims Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. Methods and results Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44–9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73–0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92–0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). Conclusion Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICD
    corecore