16 research outputs found

    Genome sequences of human coronavirus OC43 and NL63, associated with respiratory infections in Kilifi, Kenya

    Get PDF
    Coding-complete genomes of two human coronavirus OC43 strains and one NL63 strain were obtained by metagenomic sequencing of clinical samples collected in 2017 and 2018 in Kilifi, Kenya. Maximum likelihood phylogenies showed that the OC43 strains were genetically dissimilar and that the NL63 strain was closely related to NL63 genotype B viruses. [Abstract copyright: Copyright © 2019 Kamau et al.

    Molecular epidemiology of human rhinovirus from one-year surveillance within a school setting in rural coastal Kenya

    Get PDF
    Background Human rhinovirus (HRV) is the most common cause of the common cold but may also lead to more severe respiratory illness in vulnerable populations. The epidemiology and genetic diversity of HRV within a school setting have not been previously described. Objective To characterise HRV molecular epidemiology in primary school in a rural location of Kenya. Methods Between May 2017 to April 2018, over three school terms, we collected 1859 nasopharyngeal swabs (NPS) from pupils and teachers with symptoms of acute respiratory infection in a public primary school in Kilifi County, coastal Kenya. The samples were tested for HRV using real-time RT-PCR. HRV positive samples were sequenced in the VP4/VP2 coding region for species and genotype classification. Results A total of 307 NPS (16.4%) from 164 individuals were HRV positive, and 253 (82.4%) were successfully sequenced. The proportion of HRV in the lower primary classes was higher (19.8%) than upper primary classes (12.2%), p-value &0.001. HRV-A was the most common species (134/253, 53.0%), followed by HRV-C (73/253, 28.9%) and HRV-B (46/253, 18.2%). Phylogenetic analysis identified 47 HRV genotypes. The most common genotypes were A2 and B70. Numerous (up to 22 in one school term) genotypes circulated simultaneously, there was no individual re-infection with the same genotype, and no genotype was detected in all three school terms. Conclusion HRV was frequently detected among school-going children with mild ARI symptoms, and particularly in the younger age groups (&5-year-olds). Multiple HRV introductions were observed characterised by the considerable genotype diversity

    Genomic epidemiology and evolutionary dynamics of respiratory syncytial virus group B in Kilifi, Kenya, 2015-17

    Get PDF
    Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in communities, and is a leading cause of acute respiratory illness in young children. There is paucity of genomic data from purposively sampled populations by which to investigate evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking outpatient care in 9 health facilities across a defined geographical area (∼890 km2), over 2 RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus introductions into the area and co-circulation of distinct genetic clusters, which transmitted and diversified locally with varying frequency. Increase in relative genetic diversity paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel non-synonymous change (K68Q) in antigenic site ∅ in the Fusion protein. RSVB diversity was additionally marked by signature non-synonymous substitutions that were unique to particular genomic clusters, some under diversifying selection. Our findings provide insights into recent evolutionary and epidemiological behaviors of RSV group B, and highlight possible emergence of a novel antigenic variant, which has implications on current prophylactic strategies in development

    Complete genome sequences of dengue virus type 2 strains from Kilifi, Kenya

    Get PDF
    Dengue infection remains poorly characterized in Africa and little is known regarding its associated viral genetic diversity. Here, we report dengue virus type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya

    Whole genome sequencing of two human rhinovirus A types (A101 and A15) detected in Kenya, 2016-2018

    Get PDF
    Background: Virus genome sequencing is increasingly utilized in epidemiological surveillance. Genomic data allows comprehensive evaluation of underlying viral diversity and epidemiology to inform control. For human rhinovirus (HRV), genomic amplification and sequencing is challenging due to numerous types, high genetic diversity and inadequate reference sequences. Methods: We developed a tiled amplicon type-specific protocol for genome amplification and sequencing on the Illumina MiSeq platform of two HRV types, A15 and A101. We then assessed added value in analyzing whole genomes relative to the VP4/2 region only in the investigation of HRV molecular epidemiology within the community in Kilifi, coastal Kenya. Results: We processed 73 samples collected between 2016-2018, and 48 yielded at least 70% HRV genome coverage. These included all A101 samples (n=10) and 38 (60.3%) A15 samples. Phylogenetic analysis revealed that the Kilifi A101 sequences interspersed with global A101 genomes available in GenBank collected between 1999-2016. On the other hand, our A15 sequences formed a monophyletic group separate from the global genomes collected in 2008 and 2019. Improved phylogenetic resolution was observed with the genome phylogenies compared to the VP4/2 phylogenies. Conclusions: We present a type-specific full genome sequencing approach for obtaining HRV genomic data and characterizing infections. Keyword

    Spatio-temporal distribution of rhinovirus types in Kenya: a retrospective analysis, 2014

    Get PDF
    The epidemiology and circulation patterns of various rhinovirus types within populations remains under-explored. We generated 803 VP4/VP2 gene sequences from rhinovirus-positive samples collected from acute respiratory illness (ARI) patients, including both in-patient and outpatient cases, between 1st January and 31st December 2014 from eleven surveillance sites across Kenya and used phylogenetics to characterise virus introductions and spread. RVs were detected throughout the year, with the highest detection rates observed from January to March and June to July. We detected a total of 114 of the 169 currently classified types. Our analysis revealed numerous virus introductions into Kenya characterized by local expansion and extinction, and extensive spatial mixing of types within the country due to the widespread transmission of the virus after an introduction. This work demonstrates that in a single year, the circulation of rhinovirus in Kenya was characterized by substantial genetic diversity, multiple introductions, and extensive geographical spread

    Spread and evolution of respiratory syncytial virus A genotype ON1, coastal Kenya, 2010–2015

    Get PDF
    In February 2012, the novel respiratory syncytial virus (RSV) group A, genotype ON1, was detected in Kilifi County, coastal Kenya. ON1 is characterized by a 72-nt duplication within the highly variable G gene (encoding the immunogenic attachment surface protein). Cases were diagnosed through surveillance of pneumonia in children at the county hospital. Analysis of epidemiologic, clinical, and sequence data of RSV-A viruses detected over 5 RSV seasons (2010/2011 to 2014/2015) indicated the following: 1) replacement of previously circulating genotype GA2 by ON1, 2) an abrupt expansion in the number of ON1 variants detected in the 2014/2015 epidemic, 3) recent accumulation of amino acid substitutions within the ON1 duplicated sequence, and 4) no clear evidence of altered pathogenicity relative to GA2. The study demonstrates the public health importance of molecular surveillance in defining the spread, clinical effects, and evolution of novel respiratory virus variants

    Trends and intensity of Rhinovirus invasions in Kilifi, coastal Kenya, over a 12-year period, 2007–2018

    Get PDF
    Background: Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited. Methods: Here, we analysed 1,070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya Coast. The samples were collected between 2007 and 2018 from hospitalised paediatric patients (< 60 months) with acute respiratory illness. Results: Of 7,231 children enrolled, RV was detected in 1,497 (20.7%) and VP4/VP2 sequences were recovered from 1,070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (i) persistent types (observed up to seven consecutive months), (ii) reintroduced genetically distinct variants and (iii) new invasions (average of eight new types, annually). Conclusion: Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants

    Complete Genome Sequences of Dengue Virus Type 2 Strains from Kilifi, Kenya

    Get PDF
    Dengue infection remains poorly characterized in Africa and little is known regarding its associated viral genetic diversity. Here, we report dengue virus type 2 (DENV-2) sequence data from 10 clinical samples, including 5 complete genome sequences of the cosmopolitan genotype, obtained from febrile adults seeking outpatient care in coastal Kenya

    Rhinovirus dynamics across different social structures

    Get PDF
    Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40 types), cumulatively representing &gt;90% of all known RV types. Notably, RV diversity correlated directly with the size of the population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies. Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures
    corecore