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Abstract 

Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in 

communities, and is a leading cause of acute respiratory illness in young children. There is 

paucity of genomic data from purposively sampled populations by which to investigate 

evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295 

RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking 

outpatient care in 9 health facilities across a defined geographical area (~890 km2), over 2 

RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus 

introductions into the area and co-circulation of distinct genetic clusters, which transmitted 

and diversified locally with varying frequency. Increase in relative genetic diversity 

paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that 

emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel 

non-synonymous change (K68Q) in antigenic site  in the Fusion protein. RSVB diversity 

was additionally marked by signature non-synonymous substitutions that were unique to 

particular genomic clusters, some under diversifying selection. Our findings provide insights 

into recent evolutionary and epidemiological behaviors of RSV group B, and highlight 

possible emergence of a novel antigenic variant, which has implications on current 

prophylactic strategies in development.   
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Introduction (443 words) 

Respiratory syncytial virus (RSV) is the most common cause of acute lower 

respiratory tract infection in children aged <5 years worldwide, with an estimated 

associated mortality of up to 199,000 deaths per year mostly in developing countries 

(Pneumonia Etiology Research for Child Health Study 2019; Scheltema et al. 2017). RSV is 

also an important cause of community-acquired pneumonia among hospitalized adults of all 

ages (Dowell et al. 1996). RSV has an enveloped, non-segmented, single-stranded, negative 

sense RNA genome of approximately 15,000 nucleotides encoding 11 proteins: NS1, NS2, N, 

P, M, SH, G, F, M2-1, M2-2, and L (Sullender 2000). RSV clinical isolates are classified into 

two groups (RSVA and RSVB) based on antigenic and genetic variability (Melero et al. 1997). 

Distinct genotypes of RSV circulate locally and globally suggestive of rapid global 

transmission (Bose et al. 2015). The available therapeutic modalities are chiefly supportive, 

and prophylactic treatment with neutralizing antibodies is effective in reducing morbidity in 

infants (Neuzil 2016). There is no licensed vaccine for routine use in immunization, however, 

vaccine candidates and monoclonal antibodies (mAbs) are in advanced clinical trials 

(Gerretsen and Sande 2017).  

We have previously characterised RSV dynamics in coastal Kenya, using the G 

glycoprotein gene and using whole genome sequences of RSVA genotype ON1, almost 

exclusively from samples from pneumonia patients admitted to the Kilifi County Hospital 

(Agoti et al. 2015a; Otieno et al. 2016; Otieno et al. 2018). From these studies, RSV displays 

high genetic diversity of locally circulating strains, within and between consecutive 

epidemics. Furthermore, recurrent RSV epidemics in Kilifi are depicted by sequential 

replacement of genotypes, over the long term, and high turnover of variants within 

genotypes in the short term (Agoti et al. 2015a; Otieno et al. 2016). In the current study, 
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samples arise from a design aimed to limit temporal, age-related, illness severity, 

geographical, and health care access bias. Recruitment was carried throughout a study 

location, from representative health facilities, simultaneously, and of patients of any age 

with mild acute respiratory symptoms (Nyiro et al. 2018). 

Phylodynamic methods have been used to study molecular epidemiology and 

evolutionary dynamics of RNA viruses including Ebola, Zika, influenza and coronaviruses 

(Dudas et al. 2017; Faria et al. 2013; Faria et al. 2017; Lemey et al. 2014; Sironi et al. 2020; 

Zehender et al. 2017). However, despite the importance of RSV to pneumonia 

hospitalisation and mortality among children (Pneumonia Etiology Research for Child Health 

Study 2019), there are few equivalent genome-scale studies to examine RSV transmission 

and evolution particularly within a community setting (Agoti et al. 2015b; Agoti et al. 2017; 

Agoti et al. 2019; Otieno et al. 2018; Trovao et al. 2019). While most studies on RSV focus on 

the G glycoprotein gene because of its high genetic diversity and utility as a phylogenetic 

marker, genome-wide genetic signatures additionally inform on diversity and the adaptive 

mechanisms following introduction into the population (Otieno et al. 2018). 

We measured genomic diversity, spatial and temporal circulation of RSVB in rural 

Kilifi, coastal Kenya, from samples collected through outpatient surveillance, analogous to 

studying community RSV epidemics. We present estimates of rate of evolution and time 

since the most recent common ancestor (tMRCA) and infer viral population dynamics over 

two consecutive RSV epidemics in coastal Kenya. In particular, we identify emergence of a 

novel RSVB variant carrying distinct amino acid signatures.  

 

Materials and methods 
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Study design and sample testing. RSV is highly seasonal in Kilifi, Kenya, starting from 

November through May, with a peak around January and an average duration of 18 weeks 

(Nokes et al. 2009). This study was carried out within the Kilifi Health and Demographic 

Surveillance System (KHDSS) area (Scott et al. 2012) and used samples collected from 

December 2015 to July 2017, a period covering two RSV seasonal epidemics (2015/16 and 

2016/17). Nine public outpatient health facilities in KHDSS were purposively selected 

(Matsangoni (MAT), Ngerenya (NGE), Mtondia (MTO), Sokoke  (SOK), Mavueni (MAV), 

Jaribuni (JAR), Chasimba (CHA), Pingilikani (PIN) and Junju (JUN)) to provide a broad 

representation covering major road networks and variation in population density (Fig. 1) 

(Nyiro et al. 2018). Participant recruitment and specimen collection was integrated within 

the routine patient care as detailed in (Nyiro et al. 2018). Written individual informed 

consent was sought from adult patients and parents/guardians of patients below 18 years. 

Nasopharyngeal swabs (NPS) were screened for RSVA and RSVB using a multiplex real-time 

PCR assay system (Hammitt et al. 2011; Kamau et al. 2017). RSV positives were defined as 

samples with a cycle threshold (Ct) <35.0. 

The study was approved by the Kenyan KEMRI-Scientific and Ethical Review Unit 

(SERU# 3103) and the UK University of Warwick Biomedical and Scientific Research Ethics 

Committee (BSREC# REGO-2015-6102). 

 

RSVB whole genome sequencing and data assembly. Whole genome amplification 

and sequencing was attempted for all RSVB positive samples. Reverse transcription and PCR 

amplification were performed with a six-amplicon, six-reaction strategy presented in detail 

in (Agoti et al. 2015b). Methods for quality checking of the sequence reads, depletion of 
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human reads, consensus genome assemblies and calculation of coverage depth, were as 

described in (Otieno et al. 2018).  

 

 Data compilation and sequence alignment. A global dataset was prepared by 

retrieving RSVB complete genomes from GenBank sampled between 2012 and 2016. 

Sequences published without date or location of sampling were excluded. For all analyses, 

sequence alignment was done using MAFFT v.7.221 (Katoh and Standley 2013) and the 

parameters ‘–localpair –maxiterate 1000’. Because of sparse data at the genome termini 

and in the noncoding regions, only the coding genomic regions were used for all analyses. 

 

Tests of temporal signal. A maximum likelihood (ML) tree of the Kilifi dataset was 

estimated using IQ-TREE 1.6 (Nguyen et al. 2015). The best-fit substitution model was tested 

and chosen during the tree building process and the approximate likelihood ratio test (aLRT) 

was applied to assess the reliability of key branches of the trees (1000 replicates). To 

examine the degree of temporal signal or signal of divergence accumulation over the 

sampling time interval, we first followed a standard exploratory linear regression approach. 

Root-to-tip distances were plotted as a function of sampling time according to a rooting that 

maximises the Pearson product-moment correlation coefficient using TempEst (Rambaut et 

al. 2016).  

We also explored an alternative test of temporal signal using a Mantel test (Murray 

et al. 2016) to identify whether genetically similar taxa were more likely to have been 

sampled around the same time. With this method, the significance of the correlation 

between the root-to-tip distances and sampling times was estimated against a null 

distribution obtained by reassigning the sampling dates to the taxa 1,000 times. We 
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repeated the Mantel test incorporating a clustered permutation approach (S. Duchene et al. 

2015b) where dates were randomly reassigned (1000 data replicates) among defined 

clusters of taxa. To identify clusters for clustered permutation, we used the patristic 

distances generated by IQ-TREE above and plotted a distribution plot of the distances in R (R 

Core Team 2014) (Supplementary Fig. S1). A cutoff value (0.0024 nucleotide substitutions 

per site) determined as the least value between the first and second peaks in the 

distribution (Supplementary Fig. S1), was used to define clusters as sequences within 

genetic distance threshold of <0.0024. The Mantel tests were implemented in R using 

Murray et al.’s scripts (Murray et al. 2016). 

The significance of linear regression of sampling dates against root-to-tip distances in 

the clustered permutation analyses was assessed by a P-value: comparison of the observed 

data correlation coefficient (r) to the r estimates for the data replicates with dates randomly 

permuted over the defined clusters.  

 Further, we complimented the linear regression permutation tests with Bayesian 

dating permutations done in 100 million steps and sampling every 10,000. This involved 

creating ten datasets with randomly permuted tip-dates as suggested in (Murray et al. 

2016). The significance of the Bayesian tip-date informed evolutionary rate was determined 

by comparing the mean substitution rate estimate from the observed data with the 95% 

HPDs estimated from the date randomized datasets for which no particular relationship 

between sampling time and root-to-tip divergence is expected while assuming the same 

evolutionary models in all the Bayesian dating analyses (Firth et al. 2010).  

 

Bayesian analyses. Time-calibrated phylogenies were done using BEAST v1.10 

(Suchard et al. 2018). To model the nucleotide substitution process, the codon positions 
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were partitioned into 1st + 2nd vs. 3rd positions. The HKY substitution model with a 

discretized gamma distribution was used to model rate heterogeneity across sites (Shapiro 

et al. 2006). An uncorrelated lognormal relaxed molecular clock was used to accommodate 

variation in evolutionary rate among lineages (A. J. Drummond et al. 2006) and a non-

parametric skyride demographic model with time-aware smoothing was selected. The 

molecular clock rate was set to use a noninformative continuous time Markov chain rate 

reference prior. The analyses were done in 200 million steps, sampling every 10,000. 

Stationarity and mixing (e.g. based on effective sample sizes >200 for the continuous 

parameters) were examined using Tracer version 1.7. The Bayesian dating permutation tests 

(described above) were done in 100 million steps, sampling every 10,000. Maximum clade 

credibility (MCC) trees were generated from the BEAST posterior tree sets using 

TreeAnnotator.  

 

Phylogeny-trait association analysis. For the Kilifi dataset alone, we used the 

Bayesian Tip-association Significance (BaTS) software (Parker et al. 2008) to assess the 

strength of geographic clustering in the posterior tree distribution obtained from BEAST 

analyses. The overall statistical significance was determined by estimating the parsimony 

score (PS) and association index (AI) metrics, where the null hypothesis is that clustering by 

geographic location is not more than that expected by chance. In addition, the maximum 

clade (MC) size metric was used to compare the strength of clustering at each location by 

calculating the expected (null) and the observed mean clade size from each study location. 

A significance level of 0.05 was used in all cases. The PS, AI and MC statistics were computed 

for a null distribution with 1000 replicates.  
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Selection analyses. Gene-specific nonsynonymous to synonymous substitutions 

(dN/dS) ratios were estimated using the SLAC method (Weaver et al. 2018). We also 

investigated episodic positive or diversifying selection using MEME and FUBAR methods. 

MEME aims to detect sites evolving under positive selection in a proportion of branches, 

while FUBAR uses a Bayesian approach and assumes that selection pressure is constant 

along the entire phylogeny.  

 

Sequence data availability. The sequencing reads are available in the NCBI 

BioProject database under the study accession PRJNA562116 and the genomes generated in 

this study are available in GenBank under accession numbers MN365302 to MN365600. 

 

Results 

RSVB occurrence in Kilifi, 2015 to 2017. Between December 2015 and July 2017, 

8127 nasopharyngeal swab samples were tested for RSV, and 503 (6.2%) were positive (Ct 

<35). Among the RSV positive samples, 95 (18.9%) were RSVA and 408 (81.1%) were RSVB. 

The frequency and monthly pattern of occurrence of RSVB for each participating health 

facility are shown in Fig. 2. Overall, the proportion of RSV positive individuals differed by age 

(p value <0.001) and study location (p value = 0.003) (Supplementary Table 1). The median 

age of RSV positive individuals was 20 months (interquartile range (IQR), 8-43 months), 

81.7% (411/503) were aged 5 years or younger, and 272 (54.1%) of the cases were female 

(Supplementary Table 1). The peak period for RSV case detections occurred from November 

to May the following year.  
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Genome characteristics and relative genetic diversity. Sequencing and data 

assembly was successful for 299/408 (73.3%) RSVB positive samples. The remaining 26% 

(109/408) were not sequenced at sufficient depth or the read quality was low. The final 

dataset of the Kilifi RSVB samples consisted of 295 coding-complete genomes. The median 

genome length was 15025 (range 11519 to 15257 nt). All the sequenced RSVB viruses 

belonged to the BA genotype, characterized by the presence of 60-nt duplication in the C-

terminal region of the G glycoprotein gene. Genome coverage did not vary by rRT-PCR Ct 

value. Across the genome length, there were 838 consensus level single nucleotide 

polymorphisms: 554/838 (66%) were parsimony informative, 503/554 (91%) were located 

within coding regions, and 332/503 (66%) were non-synonymous. Non-synonymous changes 

were higher at the mucin-like domains of G gene; in the N-terminal of fusion (F) gene; as 

well as in the N- and C-terminals of RNA-dependent RNA polymerase (L) gene (Fig. 3(A)).  

Bayesian demographic reconstruction (Fig. 3(B)) showed seasonal periodicity in 

relative genetic diversity corresponding with RSVB incidence. Such temporal resolution of 

changes in the viral population size could imply sufficient sampling density (Otieno et al. 

2016). A decline in relative genetic diversity was observed between the two epidemics 

indicating lineage or variant replacement. 

  

Phylogenetic relationships and spatial structure. We identified six well supported 

clades based on the phylogenetic positioning of the Kilifi samples in the context of globally 

sampled RSVB genomes (Fig. 4(A)). Three clades (II, III and IV) further segregated into 

defined temporal sub-clades. The absence of external sequences nested within the Kilifi 

clades might suggest local persistence and diversification, although we cannot exclude 

importation events from unsampled locations. Distinctively, clades V and VI solely contained 
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viruses from the 2015/16 and 2016/17 epidemics, respectively, while the other clades 

contained samples from both RSV epidemics. For each clade, we estimated the duration or 

persistence based on sample collection dates and the time of divergence (Supplementary 

Table 2), but these inferences might be biased due to assorted sampling locally and globally. 

The inferred clades were spatially disseminated (Fig. 4(B)), suggesting frequent 

mixing within Kilifi, and none was restricted to a single study location. We calculated AI and 

PS values statistics to assess the strength of spatial association with the RSVB transmission 

patterns in Kilifi. The analysis showed high AI and PS values (Table 1), suggesting strong and 

significant spatial structuring for each location (P < 0.001). Geographic clustering was 

significant in at least 8/9 study locations as shown by the maximum clade size values (Table 

1). Differences in the observed and expected MC values (Table 1) suggested that Mavueni 

exhibited the most spatial structure (difference of 8.7) and Mtondia had the least 

(difference of 0.3). 

 

Temporal signal and molecular dating. The standard linear regression exploration of 

the Kilifi dataset showed an overall correlation between the root-to-tip distances and time 

(correlation coefficient of 0.85), and a clear difference in root-to-tip distances between the 

two RSV epidemics (Fig. 5(A)). A mantel test (Murray et al. 2016) applied to the Kilifi dataset 

however found evidence of significant confounding between temporal and genetic 

structures (P = 0.001) and indicated that an alternative approach to date-randomization 

(clustered permutation) should be used to test for temporal structure. For this, we grouped 

the Kilifi genomes into 20 clusters using the pairwise patristic distance threshold of 0.0024 

(see Methods) and repeated the mantel test with sampling dates permuted over the 20 
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clusters (1000 permutations). The mantel test after clustering confirmed that our choice of 

clusters was sufficient to eliminate the confounding (P = 0.98).  

To assess the significance of the correlation between phylogenetic root-to-tip 

distance against sampling time, we performed a linear regression with a clustered date 

permutation test (100 permutations). The clustered permutation regression test reached 

significance (P = 0.001), and the r estimate with the observed data was outside the range of 

r estimates obtained using date randomization (Supplementary Fig. S2), indicating that the 

observed correlation between the root-to-tip distances and time differs significantly from 

what is expected in the absence of a temporal structure (Laenen et al. 2019).  

We further evaluated the presence of temporal signal with Bayesian dating 

permutation implemented in BEAST. Sampling dates were permuted ten times over the 

clusters defined earlier and the substitution rate estimates from the date-randomized 

datasets compared to the estimates from the true ordering of dates. The substitution rate 

of the true observed data was estimated as 9.922 x 10-4 (95% HPD: 8.14 x 10-4 – 1.18 x 10-3) 

nucleotide substitutions/site/year and did not overlap with HPD intervals obtained from the 

date-randomized datasets (Fig. 5(B)). This indicates an appreciable presence of temporal 

signal and structure in the data. The tMRCA for the Kilifi samples was estimated to 2012 

(95% HPD: 2011.1 – 2013.5).  

 

Amino acid diversity. An alignment of amino acid (aa) sequences showed mutations 

characteristic to each clade (Supplementary Table 2). In the two RSV epidemics, there were 

at least 37 and 93 aa substitutions in F and G gene, respectively. In F gene, three aa 

substitutions (A103V, L172Q and S173L) were found in antigenic site V in the 2015/16 

viruses. These three substitutions were also circulating from 2015 to 2017 in USA (Bin et al. 
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2019) and South Africa (Liu et al. 2020), and in both countries, the polymorphisms were 

detected continuously and in increasing frequency. However, none of the samples from the 

2016/17 epidemic in Kilifi had A103V, L172Q and S173L substitutions probably due to 

removal by purifying selection. It was suggested that the three substitutions likely emerged 

in 2014/15 as they were not present in RSV F sequences prior to 2013 (Bin et al. 2019).  

Numerous non-synonymous substitutions in G gene occurred together 

discriminating the two epidemics (Supplementary Fig. S3): including R136T, N144H, 

R260G, T279I, P289L and K312R that characterized viruses circulating in the 2015/16 

epidemic; and Y90H, L91F, P101S, T225N, T273I and H285Y that characterized viruses in 

2016/17. Additional clade-specific aa variations identified in other genomic regions are 

listed in Supplementary Table 2.  

Six distinct aa variants - K68Q in F gene; Y90H, L91F, T225N, T273I, and A301T in 

G gene - occurred together at a frequency >40% in the 2016/17 epidemic and distinctively 

characterized the sixth clade (Fig. 4(A)). Importantly, the K68Q substitution is found at the 

antigenic site  of pre-fusion F protein conformation, a binding epitope of monoclonal 

antibody (mAb) MEDI8897 (Zhu et al. 2017). A variant with the mutation K68N was 

reported in 2% of sampled viruses circulating in 2015-16 in the US (Bin et al. 2019). In 

addition, we found that 32% of the RSVB positive samples collected from inpatient 

admissions (<59 months) at the Kilifi County Hospital (a referral facility serving a larger 

catchment area in Kilifi county), in the 2016/17 epidemic, clustered with the G gene 

sequences from the sixth clade (data not shown). These inpatient RSVB strains similarly 

contained the aa substitutions Y90H, L91F, T225N, T273I, and A301T in G gene, 

suggesting wider circulation of this variant.  
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Selection pressure analyses. We estimated higher global non-synonymous 

(dN)/synonymous (dS) substitution rate ratios for G and SH glycoproteins than other genes 

(Table 2). SLAC analyses identified three amino-acid sites (135, 217 and 285) in G gene 

under significant positive selection (P <0.1). MEME analyses detected 3 diversifying codons 

in the F gene, and 11 in the G gene (P < 0.1) (Table 2). The FUBAR method identified 2 codon 

sites in F gene and 7 in G gene, under episodic positive selection with significant support 

(posterior probability >0.9) (Table 2).  

 

Discussion 

This study provides insights into the genomic diversity of RSVB in Kilifi county, 

coastal Kenya. We obtained 295 complete genomes from representative sampling across 

the KHDSS area, over two consecutive RSV epidemics. The two epidemics comprised of 

multiple co-circulating virus clade introductions, which circulated in all the study locations, 

suggesting substantial spatial spread and transmission in a relatively short time. Although 

RSV surveillance has improved globally, complete genomes data from recent years remains 

insufficient and may have limited our inference of spatial and temporal placement of RSVB 

in Kilifi. In the two epidemics, there was a strong spatial structure of the viral population 

indicating local transmission within the populations neighboring a health facility.  

Tip-dated inferences are reliable only if the sequence data exhibits temporal signal 

(A. J. Drummond et al. 2006; Firth et al. 2010). Conventionally, this is based on the fit of 

linear regression between sampling time and root-to-tip distance, and assuming statistical 

independence, a significant positive correlation would indicate presence of evolutionary 

change within the dataset timescale (A. Drummond et al. 2003; A. J. Drummond et al. 2006). 

However, linear regression tests alone can be misleading when there is substantial rate 
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variation among lineages, non-uniform distributed sampling times (Rieux and Balloux 2016), 

imbalanced trees and confounding temporal and genetic structures (i.e. closely related 

sequences arising from sampling at similar times, e.g. during an outbreak) (S. Duchene et al. 

2015b; D. Duchene et al. 2015a). Date randomization tests whether the observed tip-date 

informed estimates deviate from estimates obtained in absence of temporal structure (S. 

Duchene et al. 2015b). The Kilifi dataset was temporally and genetically confounded. 

However, the temporal signal in the data remained when the clustered date permutation 

approach was used confirming detectable temporal structure and assuring reliability of the 

observed tip-dated substitution rate and tMRCA inferences. Confounding may have arisen 

naturally from our clinical sampling protocol or from the evolutionary process itself, as 

suggested previously (Murray et al. 2016). According to (Vrancken et al. 2020), intense 

sampling of closely related sequences, produces a rapid succession of coalescent events just 

before sampling, reminiscent of a panmictic population that is declining in size and in turn 

biases the evolutionary rate estimate and results in misleadingly recent tMRCA (Vrancken et 

al. 2020). An evolutionary change in the genetic constitution of a virus population could lead 

to sequences sampled synchronously being more closely related, for instance in the 

‘ladderized’ Influenza A genealogies, hence inherent temporal and genetic confounding 

(Murray et al. 2016).  

A previous study showed that K68N substitution in F gene affected binding of 

MEDI8897, an RSV pre-F-specific human mAb under clinical evaluation as a passive 

immunization of all infants entering their first RSV season (Domachowske et al. 2018; Zhu et 

al. 2018). It is probable the K68Q substitution identified in clade VI in Kilifi promoted evasion 

of pre-existing immune responses. Unexpectedly, in our data, the F gene amino acid 

position 68 was not under detectable selection pressure. An explanation would be the low 
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rate of nonsynonymous evolution (conversely, high sequence conservation) at position 68 in 

our dataset, or immune driven positive selection could not be identified by methods here. In 

any case conventional approaches for measuring selection pressure consistently detect 

positive selection only at codon sites with high rates of nonsynonymous evolution 

(Kosakovsky Pond and Frost 2005).  

Our study provides a novel sequence polymorphism (K68Q) within the MEDI8897 

binding site with a frequency of nearly 50% in our study population. Additionally, the viruses 

with the K68Q mutation carried five distinctive amino-acid mutations in G gene, including 

two consecutive codons (Y90H and L91F). We are not certain whether these codon 

replacements are due to non-selective epidemiological processes or are compensatory 

mutations that retain protein function, or hitchhikers carried along by chance (Smith et al. 

2004). Still, we cannot exclude the possibility that these are relevant antigenic epitopes.  

In conclusion, we present the utility of genomic analyses to investigate virus 

transmission and genetic diversity including detection of a novel antigenically distinct 

variant. Further studies are required to determine whether the K68Q mutation is adaptive 

and/or a result of escape from antibody-mediated selection and constitutes a naturally 

acquired antiviral resistance that disrupts neutralizing antibody recognition and binding. Our 

study underscores the need for continued genomic surveillance of F and G protein antigenic 

sites as this has implications on RSV therapeutic and vaccine development. An important 

future effort for us is to assess if the K68Q mutation has become more prevalent and 

gradually fixed since the 2016/17 epidemic. Additional sequencing of RSVB from other 

regions in Kenya and neighboring countries is also essential to refine evolutionary dynamics 

and draw better conclusions about geographic origins of viral introductions in Kilifi. The 
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present study makes publicly available a large number of newly sequenced RSVB genomes 

useful for further molecular evolution studies. 
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Figure legends 

Figure 1 A map showing the geographical area covered in the Kilifi Health Demographic 

Surveillance System (KHDSS), expanded from a map of Kenya. The nine participating public 

health facilities are indicated in the map. The dark lines within the polygons indicate the 

road structure within KHDSS. The maps were rendered using QGIS 2.18.17 

(https://www.qgis.org/)  

 

Figure 2 Monthly RSVB occurrence by study location: temporal and spatial distribution of 

RSVB positive cases (left Y axis) and number of clinical samples tested (right Y axis) from 

each participating health facilities. Abbreviations: CHA = Chasimba, JAR = Jaribuni, JUN = 

Junju, MAV = Mavueni, MAT = Matsangoni, PIN = Pingilikani, NGE = Ngerenya, SOK = 

Sokoke, MTO = Mtondia 

 

Figure 3 (A) Relative frequencies of potential non-synonymous changes across codon-

aligned RSV genome sequences. The frequencies for each codon position are calculated as 

the number of non-synonymous nucleotide substitutions for all pairwise comparisons in a 

sequence alignment, while excluding ambiguous bases or insertions. Abbreviations: CT = 

cytoplasmic, TM = transmembrane, CCD = central conserved domain; SP = signal peptide; 

RdRp = RNA dependent RNA polymerase, Cap = capping, and MT = methyltransferase, CD = 

connector domain, CTD = C-terminal domain. (B) Bayesian skygrid analysis depicting 

fluctuating relative genetic diversity for the two RSV epidemics. Solid line represents mean 

relative genetic diversity while the corresponding dashed lines indicate the 95% HPD 

intervals. 
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Figure 4 Maximum clade credibility phylogenies inferred for 573 viruses sampled globally 

between 2012 and 2017. (A) Temporal structure of the Kilifi genomes with tip colors 

indicating the sampling period (RSV epidemic). Clade assignments are indicated as I to VI, 

similarly to Supplementary Table S2. Node support is indicated by posterior probability 

values. (B) MCC tree similar to (A) but showing the spatial patterns of the RSVB 

introductions in Kilifi, Kenya with tips indicating the sampling location. In both phylogenies, 

sequences from outside Kilifi are colored black.  

 

Figure 5 (A) Root-to-tip genetic distances as a function of sampling time. (B) Estimates of 

the mean and 95% HPD interval of the substitution rate (substitution/site/year) from the 

real/actual dataset (bordered by dashed line), and from the ten datasets generated by 

clustered permutation of sampling dates.  

 

Supplementary Fig. S1 Histogram of the whole genome sequences patristic distance 

frequency distribution. The vertical red dashed line corresponds to the 17th percentile 

distance threshold (0.0024 expected nucleotide substitutions per site) for which 

phylogenomic clusters were identified. The distances were measured in units of nucleotide 

substitutions per site and extracted from a maximum likelihood phylogeny (1000 bootstrap 

resampling). 

 

Supplementary Fig. S2 A histogram of the correlation coefficient (r) values of the clustered 

date-permuted data. The vertical red line represents the r value of the true date ordering. 
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Supplementary Fig. S3 Amino acid differences between viruses in the G gene. The tick 

marks (vertical colored bars) in the figure highlight amino acid differences from majority 

rule consensus.  
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Tables 

Table 1 Results of Bayesian analysis of phylogeographic structure of RSVB viruses in Kilifi, 

coastal Kenya, 2015-2017. P values correspond to the proportion of trees from the expected 

(null) distribution equal to, or more extreme than, the median posterior of the statistic. 

Abbreviations: CHA = Chasimba, JAR = Jaribuni, JUN = Junju, MAV = Mavueni, MAT = 

Matsangoni, PIN = Pingilikani, NGE = Ngerenya, SOK = Sokoke, MTO = Mtondia.  

 Association Index (AI) 

(95% CI) † 

Parsimony Score (PS) 

(95% CI) † 

Maximum Clade size 

(95% CI) ‡ 

Location Observed Expected P 

value 

Observed Expected P 

value 

Observed Expected P 

value 

Difference 

§ 

ALL 14.8 (13.8-

15.8) 

31 (29.5-

32.3) 

<0.001 132.6 

(129-136) 

208.4 (202-

214.2) 

<0.001 - - - - 

CHA - - - - - - 4.6 (4-6) 1.84 (1.1-

2.7) 

10E-4 2.62 

JAR - - - - - - 5.27 (5-6) 1.56 (1-

2.08) 

10E-4 3.71 

JUN - - - - - - 6 (6-6) 1.55 (1-

2.03) 

10E-4 4.45 

MAT - - - - - - 6.32 (4-

10) 

1.71 (1-2.2) 10E-4 4.61 

MAV - - - - - - 11 (11-11) 2.3 (1.76-3) 10E-4 8.7 

MTO - - - - - - 2 (2-2) 1.7 (1-2.3) 0.21 0.3 

NGE - - - - - - 3.65 (2-4) 1.64 (1-2.2) 10E-4 2.01 

PIN - - - - - - 3.1 (3-4) 1.73 (1-2.2) 0.0084 1.37 

SOK - - - - - - 4 (3-5) 1.8 (1.1-

2.3) 

10E-4 2.2 

†AI and PS metrics were determined for all locations combined. 
‡ Maximum clade size was determined for each specific location. 
§ Difference between observed and expected (null) clade size. 

Table 2 The predicted nature of selection pressures acting on each genomic region: 1st 

column shows the computed mean dN/dS rate ratio using SLAC and the 2nd column shows 
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amino-acid sites in F and G gene under episodic selection as identified by MEME analyses. 

Sites also detected using the FUBAR method, in addition to MEME, are underlined. 

Non-synonymous (dN)/synonymous 

(dS) substitution rate ratio per site  

Sites subject to episodic 

positive/diversifying selection  

NS1 

NS2 

N 

M 

P 

F 

G 

SH 

M2-1 

M2-2 

L 

0.12 

0.236 

0.0832 

0.0525 

0.0642 

0.179 

0.487 

0.426 

0.264 

0.267 

0.122 

G gene 

135, 144, 154, 172, 208, 217, 

285, 291, 294, 298, 303 

252* 

 

F gene 

125, 172, 173 

* This site was detected by the FUBAR method only.  
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Ethical considerations
All individuals, parents and guardians gave written informed 
consent for themselves or their children to participate in this 
study. The study was approved by the KEMRI-Scientific and 
Ethical Review Unit (SERU# 3103) and the University of  
Warwick Biomedical and Scientific Research Ethics Committee  
(BSREC# REGO-2015-6102).

Laboratory procedures
NPS collections received at KWTRP virology laboratory were 
stored in 2-ml vials at −80°C until use. Using previously described 
methods17–19, RNA was extracted from the respiratory specimens 
by Qiacube HT using an RNeasy extraction kit (Qiagen,  
Germany) and screened for RSV (A and B), rhinovirus (HRV), 
human coronaviruses (OC43, NL63, E229), influenza viruses 
(FLU-A, B, and C), parainfluenza viruses (PIV 1-4), adenovirus 
(ADV) and human metapneumovirus (HMPV), using a multiplex 

real-time PCR assay system. Samples with cycle threshold 
(Ct) of <35.0 were defined as positive for the target virus. Residual 
NPS samples were stored at −80°C.

Statistical analysis
Statistical analysis was conducted using STATA version 13.1 
(College Station, Texas). Summary statistics were produced  
for the data to give the proportions of virus positives by age 
and by location. Comparative data was obtained from the  
paediatric ward of KCH for patients aged <5 years admitted  
with acute LRTI from a contemporaneous respiratory virus  
surveillance20–23. Chi-squared and Fisher’s exact tests were used to test  
associations of virus occurrence with age, calendar month,  
facility, setting (outpatient or inpatient) and other demographic  
characteristics. Frequency distribution graphs were generated 
for all virus targets. Graphs for temporal patterns for each virus  
were generated.

Figure 1. A map of the Kilifi Health and Demographic Surveillance System (HDSS) area, coastal Kenya, expanded from a map of 
Kenya, showing population density (person per Km2) and the health facilities where the study was conducted in 2016. The red circles 
show the nine participating health facilities while the green markers show the other public health facilities within the KHDSS area.

Page 4 of 19

Wellcome Open Research 2018, 3:89 Last updated: 06 AUG 2018

Indian 
Ocean

Matsangoni

Ngerenya

Mtondia

Sokoke

Mavueni

Jaribuni

Chasimba

Pingilikani

Junju

Ethical considerations
All individuals, parents and guardians gave written informed 
consent for themselves or their children to participate in this 
study. The study was approved by the KEMRI-Scientific and 
Ethical Review Unit (SERU# 3103) and the University of  
Warwick Biomedical and Scientific Research Ethics Committee  
(BSREC# REGO-2015-6102).

Laboratory procedures
NPS collections received at KWTRP virology laboratory were 
stored in 2-ml vials at −80°C until use. Using previously described 
methods17–19, RNA was extracted from the respiratory specimens 
by Qiacube HT using an RNeasy extraction kit (Qiagen,  
Germany) and screened for RSV (A and B), rhinovirus (HRV), 
human coronaviruses (OC43, NL63, E229), influenza viruses 
(FLU-A, B, and C), parainfluenza viruses (PIV 1-4), adenovirus 
(ADV) and human metapneumovirus (HMPV), using a multiplex 

real-time PCR assay system. Samples with cycle threshold 
(Ct) of <35.0 were defined as positive for the target virus. Residual 
NPS samples were stored at −80°C.

Statistical analysis
Statistical analysis was conducted using STATA version 13.1 
(College Station, Texas). Summary statistics were produced  
for the data to give the proportions of virus positives by age 
and by location. Comparative data was obtained from the  
paediatric ward of KCH for patients aged <5 years admitted  
with acute LRTI from a contemporaneous respiratory virus  
surveillance20–23. Chi-squared and Fisher’s exact tests were used to test  
associations of virus occurrence with age, calendar month,  
facility, setting (outpatient or inpatient) and other demographic  
characteristics. Frequency distribution graphs were generated 
for all virus targets. Graphs for temporal patterns for each virus  
were generated.

Figure 1. A map of the Kilifi Health and Demographic Surveillance System (HDSS) area, coastal Kenya, expanded from a map of 
Kenya, showing population density (person per Km2) and the health facilities where the study was conducted in 2016. The red circles 
show the nine participating health facilities while the green markers show the other public health facilities within the KHDSS area.

Page 4 of 19

Wellcome Open Research 2018, 3:89 Last updated: 06 AUG 2018

KCH

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

Month−Year

R
SV

−B
 c

as
es

0
2

4
6

8
10

12

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Chasimba

● ●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

Month−Year

RS
V−

B 
ca

se
s

0
2

4
6

8
10

12
14

16
18

Dec−15 Feb−16 Apr−16 Jun−16 Aug−16 Oct−16 Dec−16 Feb−17 Apr−17 Jun−17

Jaribuni

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

Month−Year

R
SV

−B
 c

as
es

0
1

2
3

4
5

6
7

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Junju

●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

Month−Year

RS
V−

B 
ca

se
s

0
2

4
6

8
10

12
14

16
18

Dec−15 Feb−16 Apr−16 Jun−16 Aug−16 Oct−16 Dec−16 Feb−17 Apr−17 Jun−17

Matsangoni

● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

Month−Year

RS
V−

B 
ca

se
s

0
1

2
3

4
5

6
7

8
9

11
13

15

Dec−15 Feb−16 Apr−16 Jun−16 Aug−16 Oct−16 Dec−16 Feb−17 Apr−17 Jun−17

Mavueni

●

●

●

●

● ● ●

● ● ● ● ● ●

● ●

●

●

●

●

Month−Year

R
SV

−B
 c

as
es

0
1

2
3

4
5

6
7

8
9

11

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Ngerenya

●

●

●

●

●

● ● ●

●

● ● ● ●

●

●

●

●

● ●

Month−Year

R
SV

−B
 c

as
es

0
1

2
3

4
5

6
7

8
9

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Pingilikani

●

● ●

●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

Month−Year

R
SV

−B
 c

as
es

0
1

2
3

4
5

6
7

8
9

11

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Mtondia

●

●

●

●

●

● ● ● ●

●

● ● ●

●

●

●

●

●

●

Month−Year

R
SV

−B
 c

as
es

0
1

2
3

4
5

6
7

8
9

11

Dec−15 Mar−16 Jun−16 Sep−16 Dec−16 Mar−17 Jun−17

Sokoke

RS
VB

 c
as

es

BA

Indian 
Ocean

KCH

MAV

NGE

Mombasa-
Malindi road

Malindi

Mombasa

Population Density

2200-6000
800-2200

500-800
250-500
0-250

Page 27 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



D
ec

−
15

Ja
n−

16

F
eb

−
16

M
ar

−
16

A
pr

−
16

M
ay

−
16

Ju
n−

16

Ju
l−

16

A
ug

−
16

S
ep

−
16

O
ct

−
16

N
ov

−
16

D
ec

−
16

Ja
n−

17

F
eb

−
17

M
ar

−
17

A
pr

−
17

M
ay

−
17

Ju
n−

17

0.0
2.5
5.0
7.5

10.0
12.5

0
5

10
15

0
3
6
9

0
5

10
15

0

5

10

15

0
3
6
9

12

0
3
6
9

12

0
3
6
9

12

0
3
6
9

0
20
40
60
80

0

40

80

120

0
20
40
60

0
30
60
90
120

0
25
50
75
100

0
20
40
60

0
20
40
60

0
20
40
60

0
20
40

60

Month / Year

R
S

V
B

 p
os

iti
ve

 s
am

pl
es

 (
ba

r) S
am

ples tested (line)

CHA JAR JUN MAT MAV MTO NGE PIN SOK

Page 28 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



0.0

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Amino acid position

N
on
−s

yn
on

ym
ou

s 
ch

an
ge

s

NS1
NS2

N P M SH G F M2-1
M2-2

L

Mucin-like domain I CCDTMCT
1 41 67 164 186 319

Mucin-like domain II

1
pep27SP

22 110 136 574
F2 F1

1 945

RdRP

1461 1759 2039 2165

Cap CD MT CTD

G

F

L

10−0.5

100

100.5

101

101.5

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5

Year

R
el

at
ive

 g
en

et
ic

 d
ive

rs
ity

 (l
og

)

A B
Page 29 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



samplingLocation
chasimba
jaribuni
junju
matsangoni
mavueni
mtondia
ngerenya
pingilikani
sokoke

1.0

Chasimba
Jaribuni
Junju
Matsangoni
Mavueni
Mtondia
Ngerenya
Pingilikani
Sokoke

Study location



epidemic

2015-16

2016-17

1.0

2015/16
2016/17

RSV epidemic

2

93 99 99

99

99
96

99

99 99

99

99
99

99

99

99

92
99 99

99 99

99

99

98

99

98

95
99

99

90

99

99

98

98



BA
I

II

III

IV

V

VI

I

II

III

IV

V

VI

Page 30 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



A B

6.0e−04

8.0e−04

1.0e−03

1.2e−03

1 2 3 4 5 6 7 8 9 10

Cluster permutations of sampling dates

Su
bs

tit
ut

io
n 

ra
te

Page 31 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



Supplementary Table 1

Distribution of RSV positive and negative samples by age, gender, and participating outpatient 
health facilities between December 2015 and June 2017

Characteristic Virus positive 
samples

% Virus negative 
samples

% Total (n) P value

(n=503) 6.19 7624 93.8 8127
Age in years

Mean 9 149.4 144.0
Median (IQR) 20 (8-43) 54(18-194) 49 (17-188)

Sex
Male 231 6.7 3195 93.3 3426 0.078

Female 272 5.8 4428 94.2 4700

Age Category

0–5 mo 85 11.3 665 88.7 750 <0.001

6–11 mo 84 11.0 681 89.0 765

12–23 mo 102 9.1 1021 90.9 1123

24–35 mo 76 9.6 712 90.4 788

3–4 y 64 6.7 898 93.4 962

5–9 y 37 3.4 1046 96.6 1083

10–19 y 21 2.0 1024 98.0 1045

20–49 y 23 2.1 1098 98.0 1121

50–100 y 11 2.3 479 97.8 490

Health Facility

Matsangoni 58 6.1 895 93.9 953 0.003

Ngerenya 58 6.5 840 93.5 898

Sokoke 50 5.7 826 94.3 876

Mtondia 66 6.9 898 93.2 964

Mavueni 79 8.6 838 91.4 917

Jaribuni 43 5.1 803 94.9 846

Chasimba 67 7.5 826 92.5 893

Junju 40 4.3 889 95.7 929

Pingilikani 42 4.9 809 95.1 851
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Supplementary Table 2 
Number of samples, time of divergence and duration of the identified RSVB clades in Kilifi. 
Also shown are amino acid substitutions identified in majority of sequences in the respective 
clades. 95% credible intervals are indicated in the brackets.

Clade No. of 

samples

tMRCA Duration of 

persistence

Amino acid substitutions in genomic regions

I 76 May 2014 173 days N gene (A97V)

G gene (P101S, H267Y, I268T, T290A, P304L)

L gene (S176N, P1708L, Y1980F); 

F gene (I99T, I129T, P104S, I5V); 

NS2 gene (S53N, Q101R); 

II 40 September 

2013

181 days N gene (A97V); 

G gene (N144H, I205T, P214L, V249A, P293L, S305P); 

F gene (M25C); 

L gene (R304Q, T1956I)

III 21 January 2014 211 days NS2 gene (I5T); 

L gene (T1166I, Q2066R); 

G gene (A269V, S270P, E294D);

F gene (K419R)

IV 80 December 

2013

154 days P gene (T60I); 

F gene (V103A, L172Q, S173L, I115T, P125L, T303I, 

I542L);

L gene (T105I, Y141H, Q183N); 

G gene (L315P)

V 5 March 2014 36 days F gene (I16T); 

L gene (T1744A, V1787G)

VI 73 May 2013 172 days G gene (Y90H, L91F, T225N, T273I, A301T); 

F gene (K68Q); 

NS2 gene (K80R); 

L gene (P184S)

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



0
10
0

20
0

30
0

40
0

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01
0

0.
01
2

0.
01
4

0.
01
6

0.
01
8

0.
02
0

0.
02
2

0.
02
4

Genetic distances

Fr
eq

ue
nc

y 
(d

en
si

ty
)

0
20
0

40
0

60
0

80
0

0.
00
18

0.
00
20

0.
00
22

0.
00
24

0.
00
26

0.
00
28

0.
00
30

0.
00
32

0.
00
34

0.
00
36

0.
00
38

0.
00
40

0.
00
42

0.
00

24

Page 34 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



2014 2015 2016 2017

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Regression

Dates

R
oo

t−
to
−t

ip
 d

is
ta

nc
e

r = 0.85
Time of MRCA = 2014

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

...........

.............

.............

.............

.............

.............

.............

.............

.............

.

.............

...

No clusters = 19 Randomised data sets

r

Fr
eq

ue
nc

y

−0.5 0.0 0.5

0
5

10
15

20
25

p−value = 0.01
min p−value = 0.01

Page 35 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020



20
15

/1
6

20
16

/1
7

Page 36 of 36

https://mc.manuscriptcentral.com/vevolu

Manuscripts submitted to Virus Evolution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa050/5871933 by guest on 30 July 2020




