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Abstract

Respiratory syncytial virus (RSV) circulates worldwide, occurring seasonally in
communities, and is a leading cause of acute respiratory illness in young children. There is
paucity of genomic data from purposively sampled populations by which to investigate
evolutionary dynamics and transmission patterns of RSV. Here we present an analysis of 295
RSV group B (RSVB) genomes from Kilifi, coastal Kenya, sampled from individuals seeking
outpatient care in 9 health facilities across a defined geographical area (~890 km?), over 2
RSV epidemics between 2015 and 2017. RSVB diversity was characterized by multiple virus
introductions into the area and co-circulation of distinct genetic clusters, which transmitted
and diversified locally with varying frequency. Increase in relative genetic diversity
paralleled seasonal virus incidence. Importantly, we identified a cluster of viruses that
emerged in the 2016/17 epidemic, carrying distinct amino-acid signatures including a novel
non-synonymous change (K68Q) in antigenic site & in the Fusion protein. RSVB diversity
was additionally marked by signature non-synonymous substitutions that were unique to
particular genomic clusters, some under diversifying selection. Our findings provide insights
into recent evolutionary and epidemiological behaviors of RSV group B, and highlight
possible emergence of a novel antigenic variant, which has implications on current

prophylactic strategies in development.
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Introduction (443 words)

Respiratory syncytial virus (RSV) is the most common cause of acute lower
respiratory tract infection in children aged <5 years worldwide, with an estimated
associated mortality of up to 199,000 deaths per year mostly in developing countries
(Pneumonia Etiology Research for Child Health Study 2019; Scheltema et al. 2017). RSV is
also an important cause of community-acquired pneumonia among hospitalized adults of all
ages (Dowell et al. 1996). RSV has an enveloped, non-segmented, single-stranded, negative
sense RNA genome of approximately 15,000 nucleotides encoding 11 proteins: NS1, NS2, N,
P, M, SH, G, F, M2-1, M2-2, and L (Sullender 2000). RSV clinical isolates are classified into
two groups (RSVA and RSVB) based on antigenic and genetic variability (Melero et al. 1997).
Distinct genotypes of RSV circulate locally and globally suggestive of rapid global
transmission (Bose et al. 2015). The available therapeutic modalities are chiefly supportive,
and prophylactic treatment with neutralizing antibodies is effective in reducing morbidity in
infants (Neuzil 2016). There is no licensed vaccine for routine use in immunization, however,
vaccine candidates and monoclonal antibodies (mAbs) are in advanced clinical trials
(Gerretsen and Sande 2017).

We have previously characterised RSV dynamics in coastal Kenya, using the G
glycoprotein gene and using whole genome sequences of RSVA genotype ON1, almost
exclusively from samples from pneumonia patients admitted to the Kilifi County Hospital
(Agoti et al. 2015a; Otieno et al. 2016; Otieno et al. 2018). From these studies, RSV displays
high genetic diversity of locally circulating strains, within and between consecutive
epidemics. Furthermore, recurrent RSV epidemics in Kilifi are depicted by sequential
replacement of genotypes, over the long term, and high turnover of variants within

genotypes in the short term (Agoti et al. 2015a; Otieno et al. 2016). In the current study,
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samples arise from a design aimed to limit temporal, age-related, illness severity,
geographical, and health care access bias. Recruitment was carried throughout a study
location, from representative health facilities, simultaneously, and of patients of any age
with mild acute respiratory symptoms (Nyiro et al. 2018).

Phylodynamic methods have been used to study molecular epidemiology and
evolutionary dynamics of RNA viruses including Ebola, Zika, influenza and coronaviruses
(Dudas et al. 2017; Faria et al. 2013; Faria et al. 2017; Lemey et al. 2014; Sironi et al. 2020;
Zehender et al. 2017). However, despite the importance of RSV to pneumonia
hospitalisation and mortality among children (Pneumonia Etiology Research for Child Health
Study 2019), there are few equivalent genome-scale studies to examine RSV transmission
and evolution particularly within a community setting (Agoti et al. 2015b; Agoti et al. 2017;
Agoti et al. 2019; Otieno et al. 2018; Trovao et al. 2019). While most studies on RSV focus on
the G glycoprotein gene because of its high genetic diversity and utility as a phylogenetic
marker, genome-wide genetic signatures additionally inform on diversity and the adaptive
mechanisms following introduction into the population (Otieno et al. 2018).

We measured genomic diversity, spatial and temporal circulation of RSVB in rural
Kilifi, coastal Kenya, from samples collected through outpatient surveillance, analogous to
studying community RSV epidemics. We present estimates of rate of evolution and time
since the most recent common ancestor (tMRCA) and infer viral population dynamics over
two consecutive RSV epidemics in coastal Kenya. In particular, we identify emergence of a

novel RSVB variant carrying distinct amino acid signatures.

Materials and methods
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Study design and sample testing. RSV is highly seasonal in Kilifi, Kenya, starting from
November through May, with a peak around January and an average duration of 18 weeks
(Nokes et al. 2009). This study was carried out within the Kilifi Health and Demographic
Surveillance System (KHDSS) area (Scott et al. 2012) and used samples collected from
December 2015 to July 2017, a period covering two RSV seasonal epidemics (2015/16 and
2016/17). Nine public outpatient health facilities in KHDSS were purposively selected
(Matsangoni (MAT), Ngerenya (NGE), Mtondia (MTO), Sokoke (SOK), Mavueni (MAV),
Jaribuni (JAR), Chasimba (CHA), Pingilikani (PIN) and Junju (JUN)) to provide a broad
representation covering major road networks and variation in population density (Fig. 1)
(Nyiro et al. 2018). Participant recruitment and specimen collection was integrated within
the routine patient care as detailed in (Nyiro et al. 2018). Written individual informed
consent was sought from adult patients and parents/guardians of patients below 18 years.
Nasopharyngeal swabs (NPS) were screened for RSVA and RSVB using a multiplex real-time
PCR assay system (Hammitt et al. 2011; Kamau et al. 2017). RSV positives were defined as
samples with a cycle threshold (Ct) <35.0.

The study was approved by the Kenyan KEMRI-Scientific and Ethical Review Unit
(SERU# 3103) and the UK University of Warwick Biomedical and Scientific Research Ethics

Committee (BSREC# REGO-2015-6102).

RSVB whole genome sequencing and data assembly. Whole genome amplification
and sequencing was attempted for all RSVB positive samples. Reverse transcription and PCR
amplification were performed with a six-amplicon, six-reaction strategy presented in detail

in (Agoti et al. 2015b). Methods for quality checking of the sequence reads, depletion of
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human reads, consensus genome assemblies and calculation of coverage depth, were as

described in (Otieno et al. 2018).

Data compilation and sequence alignment. A global dataset was prepared by
retrieving RSVB complete genomes from GenBank sampled between 2012 and 2016.
Sequences published without date or location of sampling were excluded. For all analyses,
sequence alignment was done using MAFFT v.7.221 (Katoh and Standley 2013) and the
parameters ‘—localpair —-maxiterate 1000’. Because of sparse data at the genome termini

and in the noncoding regions, only the coding genomic regions were used for all analyses.

Tests of temporal signal. A maximum likelihood (ML) tree of the Kilifi dataset was
estimated using IQ-TREE 1.6 (Nguyen et al. 2015). The best-fit substitution model was tested
and chosen during the tree building process and the approximate likelihood ratio test (aLRT)
was applied to assess the reliability of key branches of the trees (1000 replicates). To
examine the degree of temporal signal or signal of divergence accumulation over the
sampling time interval, we first followed a standard exploratory linear regression approach.
Root-to-tip distances were plotted as a function of sampling time according to a rooting that
maximises the Pearson product-moment correlation coefficient using TempEst (Rambaut et
al. 2016).

We also explored an alternative test of temporal signal using a Mantel test (Murray
et al. 2016) to identify whether genetically similar taxa were more likely to have been
sampled around the same time. With this method, the significance of the correlation
between the root-to-tip distances and sampling times was estimated against a null

distribution obtained by reassigning the sampling dates to the taxa 1,000 times. We

020z AInf 0 uo }senb Aq ££61./85/0S0BESABA/EE0 "0 1/I0P/IOBIISAR-8[0I1IE/OA/W0D dNO"DIIBPEOE)/:SARY WOy POPEOIUMO(



repeated the Mantel test incorporating a clustered permutation approach (S. Duchene et al.
2015b) where dates were randomly reassigned (1000 data replicates) among defined
clusters of taxa. To identify clusters for clustered permutation, we used the patristic
distances generated by IQ-TREE above and plotted a distribution plot of the distances in R (R
Core Team 2014) (Supplementary Fig. S1). A cutoff value (0.0024 nucleotide substitutions
per site) determined as the least value between the first and second peaks in the
distribution (Supplementary Fig. S1), was used to define clusters as sequences within
genetic distance threshold of <0.0024. The Mantel tests were implemented in R using
Murray et al.’s scripts (Murray et al. 2016).

The significance of linear regression of sampling dates against root-to-tip distances in
the clustered permutation analyses was assessed by a P-value: comparison of the observed
data correlation coefficient (r) to the r estimates for the data replicates with dates randomly
permuted over the defined clusters.

Further, we complimented the linear regression permutation tests with Bayesian
dating permutations done in 100 million steps and sampling every 10,000. This involved
creating ten datasets with randomly permuted tip-dates as suggested in (Murray et al.
2016). The significance of the Bayesian tip-date informed evolutionary rate was determined
by comparing the mean substitution rate estimate from the observed data with the 95%
HPDs estimated from the date randomized datasets for which no particular relationship
between sampling time and root-to-tip divergence is expected while assuming the same

evolutionary models in all the Bayesian dating analyses (Firth et al. 2010).

Bayesian analyses. Time-calibrated phylogenies were done using BEAST v1.10

(Suchard et al. 2018). To model the nucleotide substitution process, the codon positions
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were partitioned into 1°' + 2" ys. 3™ positions. The HKY substitution model with a
discretized gamma distribution was used to model rate heterogeneity across sites (Shapiro
et al. 2006). An uncorrelated lognormal relaxed molecular clock was used to accommodate
variation in evolutionary rate among lineages (A. J. Drummond et al. 2006) and a non-
parametric skyride demographic model with time-aware smoothing was selected. The
molecular clock rate was set to use a noninformative continuous time Markov chain rate
reference prior. The analyses were done in 200 million steps, sampling every 10,000.
Stationarity and mixing (e.g. based on effective sample sizes >200 for the continuous
parameters) were examined using Tracer version 1.7. The Bayesian dating permutation tests
(described above) were done in 100 million steps, sampling every 10,000. Maximum clade
credibility (MCC) trees were generated from the BEAST posterior tree sets using

TreeAnnotator.

Phylogeny-trait association analysis. For the Kilifi dataset alone, we used the
Bayesian Tip-association Significance (BaTS) software (Parker et al. 2008) to assess the
strength of geographic clustering in the posterior tree distribution obtained from BEAST
analyses. The overall statistical significance was determined by estimating the parsimony
score (PS) and association index (Al) metrics, where the null hypothesis is that clustering by
geographic location is not more than that expected by chance. In addition, the maximum
clade (MC) size metric was used to compare the strength of clustering at each location by
calculating the expected (null) and the observed mean clade size from each study location.
A significance level of 0.05 was used in all cases. The PS, Al and MC statistics were computed

for a null distribution with 1000 replicates.
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Selection analyses. Gene-specific nonsynonymous to synonymous substitutions
(dN/dS) ratios were estimated using the SLAC method (Weaver et al. 2018). We also
investigated episodic positive or diversifying selection using MEME and FUBAR methods.
MEME aims to detect sites evolving under positive selection in a proportion of branches,
while FUBAR uses a Bayesian approach and assumes that selection pressure is constant

along the entire phylogeny.

Sequence data availability. The sequencing reads are available in the NCBI
BioProject database under the study accession PRINA562116 and the genomes generated in

this study are available in GenBank under accession numbers MN365302 to MN365600.

Results

RSVB occurrence in Kilifi, 2015 to 2017. Between December 2015 and July 2017,
8127 nasopharyngeal swab samples were tested for RSV, and 503 (6.2%) were positive (Ct
<35). Among the RSV positive samples, 95 (18.9%) were RSVA and 408 (81.1%) were RSVB.
The frequency and monthly pattern of occurrence of RSVB for each participating health
facility are shown in Fig. 2. Overall, the proportion of RSV positive individuals differed by age
(p value <0.001) and study location (p value = 0.003) (Supplementary Table 1). The median
age of RSV positive individuals was 20 months (interquartile range (IQR), 8-43 months),
81.7% (411/503) were aged 5 years or younger, and 272 (54.1%) of the cases were female
(Supplementary Table 1). The peak period for RSV case detections occurred from November

to May the following year.
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Genome characteristics and relative genetic diversity. Sequencing and data
assembly was successful for 299/408 (73.3%) RSVB positive samples. The remaining 26%
(109/408) were not sequenced at sufficient depth or the read quality was low. The final
dataset of the Kilifi RSVB samples consisted of 295 coding-complete genomes. The median
genome length was 15025 (range 11519 to 15257 nt). All the sequenced RSVB viruses
belonged to the BA genotype, characterized by the presence of 60-nt duplication in the C-
terminal region of the G glycoprotein gene. Genome coverage did not vary by rRT-PCR Ct
value. Across the genome length, there were 838 consensus level single nucleotide
polymorphisms: 554/838 (66%) were parsimony informative, 503/554 (91%) were located
within coding regions, and 332/503 (66%) were non-synonymous. Non-synonymous changes
were higher at the mucin-like domains of G gene; in the N-terminal of fusion (F) gene; as
well as in the N- and C-terminals of RNA-dependent RNA polymerase (L) gene (Fig. 3(A)).

Bayesian demographic reconstruction (Fig. 3(B)) showed seasonal periodicity in
relative genetic diversity corresponding with RSVB incidence. Such temporal resolution of
changes in the viral population size could imply sufficient sampling density (Otieno et al.
2016). A decline in relative genetic diversity was observed between the two epidemics

indicating lineage or variant replacement.

Phylogenetic relationships and spatial structure. We identified six well supported
clades based on the phylogenetic positioning of the Kilifi samples in the context of globally
sampled RSVB genomes (Fig. 4(A)). Three clades (lI, lll and IV) further segregated into
defined temporal sub-clades. The absence of external sequences nested within the Kilifi
clades might suggest local persistence and diversification, although we cannot exclude

importation events from unsampled locations. Distinctively, clades V and VI solely contained
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viruses from the 2015/16 and 2016/17 epidemics, respectively, while the other clades
contained samples from both RSV epidemics. For each clade, we estimated the duration or
persistence based on sample collection dates and the time of divergence (Supplementary
Table 2), but these inferences might be biased due to assorted sampling locally and globally.

The inferred clades were spatially disseminated (Fig. 4(B)), suggesting frequent
mixing within Kilifi, and none was restricted to a single study location. We calculated Al and
PS values statistics to assess the strength of spatial association with the RSVB transmission
patterns in Kilifi. The analysis showed high Al and PS values (Table 1), suggesting strong and
significant spatial structuring for each location (P < 0.001). Geographic clustering was
significant in at least 8/9 study locations as shown by the maximum clade size values (Table
1). Differences in the observed and expected MC values (Table 1) suggested that Mavueni
exhibited the most spatial structure (difference of 8.7) and Mtondia had the least

(difference of 0.3).

Temporal signal and molecular dating. The standard linear regression exploration of
the Kilifi dataset showed an overall correlation between the root-to-tip distances and time
(correlation coefficient of 0.85), and a clear difference in root-to-tip distances between the
two RSV epidemics (Fig. 5(A)). A mantel test (Murray et al. 2016) applied to the Kilifi dataset
however found evidence of significant confounding between temporal and genetic
structures (P =0.001) and indicated that an alternative approach to date-randomization
(clustered permutation) should be used to test for temporal structure. For this, we grouped
the Kilifi genomes into 20 clusters using the pairwise patristic distance threshold of 0.0024

(see Methods) and repeated the mantel test with sampling dates permuted over the 20
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clusters (1000 permutations). The mantel test after clustering confirmed that our choice of
clusters was sufficient to eliminate the confounding (P = 0.98).

To assess the significance of the correlation between phylogenetic root-to-tip
distance against sampling time, we performed a linear regression with a clustered date
permutation test (100 permutations). The clustered permutation regression test reached
significance (P = 0.001), and the r estimate with the observed data was outside the range of
r estimates obtained using date randomization (Supplementary Fig. S2), indicating that the
observed correlation between the root-to-tip distances and time differs significantly from
what is expected in the absence of a temporal structure (Laenen et al. 2019).

We further evaluated the presence of temporal signal with Bayesian dating
permutation implemented in BEAST. Sampling dates were permuted ten times over the
clusters defined earlier and the substitution rate estimates from the date-randomized
datasets compared to the estimates from the true ordering of dates. The substitution rate
of the true observed data was estimated as 9.922 x 10 (95% HPD: 8.14 x 10— 1.18 x 107%)
nucleotide substitutions/site/year and did not overlap with HPD intervals obtained from the
date-randomized datasets (Fig. 5(B)). This indicates an appreciable presence of temporal
signal and structure in the data. The tMRCA for the Kilifi samples was estimated to 2012

(95% HPD: 2011.1 — 2013.5).

Amino acid diversity. An alignment of amino acid (aa) sequences showed mutations
characteristic to each clade (Supplementary Table 2). In the two RSV epidemics, there were
at least 37 and 93 aa substitutions in F and G gene, respectively. In F gene, three aa
substitutions (A103V, L172Q and S173L) were found in antigenic site V in the 2015/16

viruses. These three substitutions were also circulating from 2015 to 2017 in USA (Bin et al.
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2019) and South Africa (Liu et al. 2020), and in both countries, the polymorphisms were
detected continuously and in increasing frequency. However, none of the samples from the
2016/17 epidemic in Kilifi had A103V, L172Q and S173L substitutions probably due to
removal by purifying selection. It was suggested that the three substitutions likely emerged
in 2014/15 as they were not present in RSV F sequences prior to 2013 (Bin et al. 2019).

Numerous non-synonymous substitutions in G gene occurred together
discriminating the two epidemics (Supplementary Fig. S3): including R136T, N144H,
R260G, T279I1, P289L and K312R that characterized viruses circulating in the 2015/16
epidemic; and Y90H, L91F, P101S, T225N, T2731 and H285Y that characterized viruses in
2016/17. Additional clade-specific aa variations identified in other genomic regions are
listed in Supplementary Table 2.

Six distinct aa variants - K68Q in F gene; Y90H, L91F, T225N, T2731, and A301T in
G gene - occurred together at a frequency >40% in the 2016/17 epidemic and distinctively
characterized the sixth clade (Fig. 4(A)). Importantly, the K68Q substitution is found at the
antigenic site & of pre-fusion F protein conformation, a binding epitope of monoclonal
antibody (mAb) MEDI8897 (Zhu et al. 2017). A variant with the mutation K68N was
reported in 2% of sampled viruses circulating in 2015-16 in the US (Bin et al. 2019). In
addition, we found that 32% of the RSVB positive samples collected from inpatient
admissions (<59 months) at the Kilifi County Hospital (a referral facility serving a larger
catchment area in Kilifi county), in the 2016/17 epidemic, clustered with the G gene
sequences from the sixth clade (data not shown). These inpatient RSVB strains similarly
contained the aa substitutions Y90H, L91F, T225N, T273l, and A301T in G gene,

suggesting wider circulation of this variant.
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Selection pressure analyses. We estimated higher global non-synonymous
(dN)/synonymous (dS) substitution rate ratios for G and SH glycoproteins than other genes
(Table 2). SLAC analyses identified three amino-acid sites (135, 217 and 285) in G gene
under significant positive selection (P <0.1). MEME analyses detected 3 diversifying codons
in the F gene, and 11 in the G gene (P < 0.1) (Table 2). The FUBAR method identified 2 codon
sites in F gene and 7 in G gene, under episodic positive selection with significant support

(posterior probability >0.9) (Table 2).

Discussion

This study provides insights into the genomic diversity of RSVB in Kilifi county,
coastal Kenya. We obtained 295 complete genomes from representative sampling across
the KHDSS area, over two consecutive RSV epidemics. The two epidemics comprised of
multiple co-circulating virus clade introductions, which circulated in all the study locations,
suggesting substantial spatial spread and transmission in a relatively short time. Although
RSV surveillance has improved globally, complete genomes data from recent years remains
insufficient and may have limited our inference of spatial and temporal placement of RSVB
in Kilifi. In the two epidemics, there was a strong spatial structure of the viral population
indicating local transmission within the populations neighboring a health facility.

Tip-dated inferences are reliable only if the sequence data exhibits temporal signal
(A. J. Drummond et al. 2006; Firth et al. 2010). Conventionally, this is based on the fit of
linear regression between sampling time and root-to-tip distance, and assuming statistical
independence, a significant positive correlation would indicate presence of evolutionary
change within the dataset timescale (A. Drummond et al. 2003; A. J. Drummond et al. 2006).

However, linear regression tests alone can be misleading when there is substantial rate
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variation among lineages, non-uniform distributed sampling times (Rieux and Balloux 2016),
imbalanced trees and confounding temporal and genetic structures (i.e. closely related
sequences arising from sampling at similar times, e.g. during an outbreak) (S. Duchene et al.
2015b; D. Duchene et al. 2015a). Date randomization tests whether the observed tip-date
informed estimates deviate from estimates obtained in absence of temporal structure (S.
Duchene et al. 2015b). The Kilifi dataset was temporally and genetically confounded.
However, the temporal signal in the data remained when the clustered date permutation
approach was used confirming detectable temporal structure and assuring reliability of the
observed tip-dated substitution rate and tMRCA inferences. Confounding may have arisen
naturally from our clinical sampling protocol or from the evolutionary process itself, as
suggested previously (Murray et al. 2016). According to (Vrancken et al. 2020), intense
sampling of closely related sequences, produces a rapid succession of coalescent events just
before sampling, reminiscent of a panmictic population that is declining in size and in turn
biases the evolutionary rate estimate and results in misleadingly recent tMRCA (Vrancken et
al. 2020). An evolutionary change in the genetic constitution of a virus population could lead
to sequences sampled synchronously being more closely related, for instance in the
‘ladderized’ Influenza A genealogies, hence inherent temporal and genetic confounding
(Murray et al. 2016).

A previous study showed that K68N substitution in F gene affected binding of
MEDI8897, an RSV pre-F-specific human mAb under clinical evaluation as a passive
immunization of all infants entering their first RSV season (Domachowske et al. 2018; Zhu et
al. 2018). It is probable the K68Q substitution identified in clade VI in Kilifi promoted evasion
of pre-existing immune responses. Unexpectedly, in our data, the F gene amino acid

position 68 was not under detectable selection pressure. An explanation would be the low
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rate of nonsynonymous evolution (conversely, high sequence conservation) at position 68 in
our dataset, or immune driven positive selection could not be identified by methods here. In
any case conventional approaches for measuring selection pressure consistently detect
positive selection only at codon sites with high rates of nonsynonymous evolution
(Kosakovsky Pond and Frost 2005).

Our study provides a novel sequence polymorphism (K68Q) within the MEDI8897
binding site with a frequency of nearly 50% in our study population. Additionally, the viruses
with the K68Q mutation carried five distinctive amino-acid mutations in G gene, including
two consecutive codons (Y90H and L91F). We are not certain whether these codon
replacements are due to non-selective epidemiological processes or are compensatory
mutations that retain protein function, or hitchhikers carried along by chance (Smith et al.
2004). still, we cannot exclude the possibility that these are relevant antigenic epitopes.

In conclusion, we present the utility of genomic analyses to investigate virus
transmission and genetic diversity including detection of a novel antigenically distinct
variant. Further studies are required to determine whether the K68Q mutation is adaptive
and/or a result of escape from antibody-mediated selection and constitutes a naturally
acquired antiviral resistance that disrupts neutralizing antibody recognition and binding. Our
study underscores the need for continued genomic surveillance of F and G protein antigenic
sites as this has implications on RSV therapeutic and vaccine development. An important
future effort for us is to assess if the K68Q mutation has become more prevalent and
gradually fixed since the 2016/17 epidemic. Additional sequencing of RSVB from other
regions in Kenya and neighboring countries is also essential to refine evolutionary dynamics

and draw better conclusions about geographic origins of viral introductions in Kilifi. The
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present study makes publicly available a large number of newly sequenced RSVB genomes

useful for further molecular evolution studies.
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Figure legends

Figure 1 A map showing the geographical area covered in the Kilifi Health Demographic
Surveillance System (KHDSS), expanded from a map of Kenya. The nine participating public
health facilities are indicated in the map. The dark lines within the polygons indicate the

road structure within KHDSS. The maps were rendered using QGIS 2.18.17

(https://www.qggis.org/)

Figure 2 Monthly RSVB occurrence by study location: temporal and spatial distribution of
RSVB positive cases (left Y axis) and number of clinical samples tested (right Y axis) from
each participating health facilities. Abbreviations: CHA = Chasimba, JAR = Jaribuni, JUN =
Junju, MAV = Mavueni, MAT = Matsangoni, PIN = Pingilikani, NGE = Ngerenya, SOK =

Sokoke, MTO = Mtondia

Figure 3 (A) Relative frequencies of potential non-synonymous changes across codon-
aligned RSV genome sequences. The frequencies for each codon position are calculated as
the number of non-synonymous nucleotide substitutions for all pairwise comparisons in a
sequence alignment, while excluding ambiguous bases or insertions. Abbreviations: CT =
cytoplasmic, TM = transmembrane, CCD = central conserved domain; SP = signal peptide;
RdRp = RNA dependent RNA polymerase, Cap = capping, and MT = methyltransferase, CD =
connector domain, CTD = C-terminal domain. (B) Bayesian skygrid analysis depicting
fluctuating relative genetic diversity for the two RSV epidemics. Solid line represents mean
relative genetic diversity while the corresponding dashed lines indicate the 95% HPD

intervals.
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Figure 4 Maximum clade credibility phylogenies inferred for 573 viruses sampled globally
between 2012 and 2017. (A) Temporal structure of the Kilifi genomes with tip colors
indicating the sampling period (RSV epidemic). Clade assignments are indicated as | to VI,
similarly to Supplementary Table S2. Node support is indicated by posterior probability
values. (B) MCC tree similar to (A) but showing the spatial patterns of the RSVB
introductions in Kilifi, Kenya with tips indicating the sampling location. In both phylogenies,

sequences from outside Kilifi are colored black.

Figure 5 (A) Root-to-tip genetic distances as a function of sampling time. (B) Estimates of
the mean and 95% HPD interval of the substitution rate (substitution/site/year) from the
real/actual dataset (bordered by dashed line), and from the ten datasets generated by

clustered permutation of sampling dates.

Supplementary Fig. S1 Histogram of the whole genome sequences patristic distance
frequency distribution. The vertical red dashed line corresponds to the 17" percentile
distance threshold (0.0024 expected nucleotide substitutions per site) for which
phylogenomic clusters were identified. The distances were measured in units of nucleotide
substitutions per site and extracted from a maximum likelihood phylogeny (1000 bootstrap

resampling).

Supplementary Fig. S2 A histogram of the correlation coefficient (r) values of the clustered

date-permuted data. The vertical red line represents the r value of the true date ordering.
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Supplementary Fig. S3 Amino acid differences between viruses in the G gene. The tick
marks (vertical colored bars) in the figure highlight amino acid differences from majority

rule consensus.
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Tables

Table 1 Results of Bayesian analysis of phylogeographic structure of RSVB viruses in Kilifi,
coastal Kenya, 2015-2017. P values correspond to the proportion of trees from the expected
(null) distribution equal to, or more extreme than, the median posterior of the statistic.
Abbreviations: CHA = Chasimba, JAR = Jaribuni, JUN = Junju, MAV = Mavueni, MAT =

Matsangoni, PIN = Pingilikani, NGE = Ngerenya, SOK = Sokoke, MTO = Mtondia.

Association Index (Al) Parsimony Score (PS) Maximum Clade size
(95% CI) t (95% Cl) t (95% ClI) #
Location | Observed Expected P Observed Expected P Observed Expected P Difference
value value value §
ALL | 14.8(13.8- 31(29.5- <0.001 | 132.6 208.4 (202- <0.001 | - - - -
15.8) 32.3) (129-136) 214.2)
CHA | - - - - - - 4.6 (4-6) 1.84 (1.1- 10E-4  2.62
2.7)
JAR | - - - - - - 5.27 (5-6)  1.56 (1- 10E-4  3.71
2.08)
JUN | - - - - - - 6 (6-6) 1.55 (1- 10E-4  4.45
2.03)
MAT | - - - - - - 6.32 (4- 1.71(1-2.2) 10E-4  4.61
10)
MAV | - - - - - - 11(11-11) 2.3(1.76-3) 10E-4 8.7
MTO | - . : - - - 2(2-2) 1.7(1-23) 021 0.3
NGE | - - - - - - 3.65(2-4) 1.64(1-2.2) 10E-4  2.01
PIN | - - - - - - 3.1(3-4) 1.73(1-2.2) 0.0084  1.37
SOK | - - = = = = 4 (3-5) 1.8 (1.1- 10E-4 22
2.3)

Al and PS metrics were determined for all locations combined.
*Maximum clade size was determined for each specific location.
S Difference between observed and expected (null) clade size.

Table 2 The predicted nature of selection pressures acting on each genomic region: 1%

column shows the computed mean dN/dS rate ratio using SLAC and the 2" column shows
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amino-acid sites in F and G gene under episodic selection as identified by MEME analyses.

Sites also detected using the FUBAR method, in addition to MEME, are underlined.

Non-synonymous (dN)/synonymous

(dS) substitution rate ratio per site

NS1
NS2
N

M

P

SH
M2-1
M2-2
L

0.12
0.236
0.0832
0.0525
0.0642
0.179
0.487
0.426
0.264
0.267
0.122

Sites subject to episodic
positive/diversifying selection
G gene

135, 144,154,172, 208, 217,
285, 291, 294, 298, 303

252+

F gene

125,172,173

* This site was detected by the FUBAR method only.
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Supplementary Table 1

Distribution of RSV positive and negative samples by age, gender, and participating outpatient
health facilities between December 2015 and June 2017

Characteristic Virus positive | % Virus negative | % Total (n) P value
samples samples
(n=503) 6.19 7624 93.8 8127
Age in years
Mean 9 149.4 144.0
Median (IQR) 20 (8-43) 54(18-194) 49 (17-188)
Sex
Male 231 6.7 3195 93.3 3426 0.078
Female 272 5.8 4428 94.2 4700
Age Category
0-5mo 85 11.3 665 88.7 750 <0.001
6-11 mo 84 11.0 681 89.0 765
12-23 mo 102 9.1 1021 90.9 1123
24-35 mo 76 9.6 712 90.4 788
34y 64 6.7 898 93.4 962
5-9y 37 3.4 1046 96.6 1083
10-19y 21 2.0 1024 98.0 1045
20-49y 23 2.1 1098 98.0 1121
50-100y 11 2.3 479 97.8 490
Health Facility
Matsangoni 58 6.1 895 93.9 953 0.003
Ngerenya 58 6.5 840 93.5 898
Sokoke 50 5.7 826 94.3 876
Mtondia 66 6.9 898 93.2 964
Mavueni 79 8.6 838 914 917
Jaribuni 43 5.1 803 94.9 846
Chasimba 67 7.5 826 92.5 893
Junju 40 4.3 889 95.7 929
Pingilikani 42 4.9 809 95.1 851
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Supplementary Table 2

Number of samples, time of divergence and duration of the identified RSVB clades in Kilifi.
Also shown are amino acid substitutions identified in majority of sequences in the respective
clades. 95% credible intervals are indicated in the brackets.

Clade

No. of

samples

tMRCA

Duration of

persistence

Amino acid substitutions in genomic regions

76

May 2014

173 days

N gene (A97V)

G gene (P101S H267Y 1268T T290A P304L)
L gene (S176N P1708L Y 1980F);

F gene (I99T, 1129T P104S, I5V);

NS2 gene (S53N Q101R);

II

40

September
2013

181 days

N gene (A97V);

G gene (N144H, I205T P214L V249A P293L S305P);
F gene (M25C);

L gene (R304Q, T1956I)

I

21

January 2014

211 days

NS2 gene (I5T);

L gene (T11661 Q2066R);

G gene (A269V S270P E294D);
F gene (K419R)

v

80

December

2013

154 days

P gene (T601);

F gene (V103A, L172Q, S173L, 1115T, P125L, T3031,
1542L);

L gene (T1051 Y141H Q183N);

G gene (L315P)

March 2014

36 days

F gene (I16T);
L gene (T1744A V1787G)

VI

73

May 2013

172 days

G gene (Y90H, L91F, T225N, T2731, A301T);
F gene (K68Q);

NS2 gene (K80R);

L gene (P184S)
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