17 research outputs found

    INDIGO - INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles.

    Get PDF
    Background: The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results: We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions: We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo.IA and AAK were supported from the KAUST CBRC Base Fund of VBB. WBa and VBB were supported from the KAUST Base Funds of VBB. US was supported by the KAUST Base Fund of US. This study was partly supported by the Saudi Economic and Development Company (SEDCO) Research Excellence award to US and VBB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya.

    Get PDF
    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37-4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12-8.56) and 0.27 (95% CI 0.14-0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study

    Genome sequence analysis of Zooshikella ganghwensis strain VG4 and its potential for the synthesis of antimicrobial metabolites

    No full text
    With antimicrobial resistance on the rise, the discovery of new compounds with novel structural scaffolds exhibiting antimicrobial properties has become an important area of research. Such compounds can serve as starting points for the development of new antimicrobials. In this report, we present the draft genome sequence of the Zooshikella ganghwensis strain VG4, isolated from Red Sea sediments, that produces metabolites with antimicrobial properties. A genomic analysis reveals that it carries at least five gene clusters that have the potential to direct biosynthesis of bioactive secondary metabolites such as polyketides and nonribosomal peptides. By using in-silico approaches, we predict the structure of these metabolites. Keywords: Bioactive secondary metabolites, Nonribosomal peptides, Polyketides, PK, NRP, Zooshikella ganghwensis genom

    Region search interface.

    No full text
    <p>This figure shows features (genes) for a region using coordinates (Contig3:198625-229704) from organism <i>Haloplasma </i><i>contractile</i> (HLPCO). This region shows the cell Division and Cell Wall (DCW) biosynthesis gene cluster. An integrated genome browser view available via Region search results page, shows here the arrangement of genes in this region of the contig from HLPCO . The table below this section shows genome region, data export options, basic details of the feature (genes), type of features and their location on the genome. The create list by feature link saves this gene list in the data warehouse for further analysis. This list stays permanently if the user is logged in. </p

    Benzoate degradation in <i>Salinisphaera</i><i>shabanensis</i>.

    No full text
    <p>The genes from <i>Salinisphaera </i><i>shabanesis</i> associated with Benzoate degradation pathway by INDIGO are shown in Red. INDIGO developed a functionality, available for all pathways present in INDIGO, that generates a specific URL to automatically display KEGG Orthologs from INDIGO on to pathway diagrams at KEGG webserver. </p

    A) Gene Ontology, B) Protein Domain and C) Pathway enrichment analysis.

    No full text
    <p>The figure shows a snapshot obtained in case when a term “cell cycle” was searched through the keyword search option and resulting genes were saved in a list that shows enrichment of GO, protein domain and pathways in comparison to the rest of the data in INDIGO. The number of hits shown for reach category can be saved as lists for further analysis.</p

    Workflow of annotation process and data warehousing.

    No full text
    <p>Here, the section marked (A) shows steps in the annotation process. Section (B) shows a PERL based conversion of annotations into an XML schema - validated using the class attributes and data types defined in the genomic model, and finally, section (C) shows the process of data warehouse development steps.</p
    corecore