197 research outputs found

    DOES PROVIDING FREE ANTI-RETROVIRAL THERAPY ENSURE OPTIMAL ADHERENCE AMONG PEOPLE LIVING WITH HIV / AIDS?

    Get PDF
    AbstractIntroduction/Back ground: Availability of Anti-Retroviral Therapy (ART) has revolutionalised the management of Human Immunodeficiency Virus /Acquired Immuno Deficiency Syndrome (HIV/AIDS) and improved the survival of those infected with the virus. However, adherence to therapy is a prerequisite for treatment success and preventing drug resistance. Aim: The present study was carried out with the aim of determining the level of adherence and factors affecting it among patients receiving free ART. Methods: A cross sectional study design was adopted and 320 HIV positive patients receiving free ART from a district hospital in Udupi were interviewed using a semi-structured questionnaire. Adherence to ART >95% of the prescribed medication was used as the cut off for deciding on the treatment adherence. Results: An encouragingly high 96.9% of the individuals were adherent to the medication over the past month. However, 41.8% of the participants reported to have ever missed doses of ART. On univariate analysis, having ever consumed alcohol, absence of side effects such as fatigue and tingling/numbness, having a feeling of sadness and sleep disturbances, being on Efavirenz based regimen, non-disclosure HIV status, being unsure of continuing lifelong treatment were significantly associated with non-adherence (p<0.05).Conclusion: Although non adherence was of concern among a small proportion of participants, a large number of them reported to have ever missed doses of ART.  This finding suggests that adherence rate may be lower over longer periods of time. Hence, periodic assessments may address patient specific barriers and help to improve the adherence rate among this population.Â

    Cardiac resynchronization therapy and atrial fibrillation

    Get PDF
    Cardiac resynchronization therapy (CRT) is an important advance for the treatment of end-stage heart failure (HF). About 15-50% of HF is complicated by atrial fibrillation (AF), associated with worsened outcomes. The presence of AF may interfere with optimal delivery of CRT due to competition with biventricular (BiV) capture by conducted beats. Pacing algorithms in newer devices may not ensure consistent CRT delivery during periods of rapid ventricular rates. Atrioventricular junction ablation with permanent pacing eliminates interference by conducted beats and provides complete BiV capture and is associated with improved outcomes. Catheter ablation of AF is another promising alternative to maintain sinus rhythm in patients with AF and HF. However, the optimal indications for CRT delivery for patients in this complex cohort remain to be assessed in randomized clinical trials

    ICU Patients’ Pattern Recognition and Correlation Identification of Vital Parameters Using Optimized Machine Learning Models

    Get PDF
    Early detection of patient deterioration in the Intensive Care Unit (ICU) can play a crucial role in improving patient outcomes. Conventional severity scales currently used to predict patient deterioration are based on a number of factors, the majority of which consist of multiple investigations. Recent advancements in machine learning (ML) within the healthcare domain offer the potential to alleviate the burden of continuous patient monitoring. In this study, we propose an optimized ML model designed to leverage variations in vital signs observed during the final 24 hours of an ICU stay for outcome predictions. Further, we elucidate the relative contributions of distinct vital parameters to these outcomes The dataset compiled in real-time encompasses six pivotal vital parameters: systolic (0) and diastolic (1) blood pressure, pulse rate (2), respiratory rate (3), oxygen saturation (SpO2) (4), and temperature (5). Of these vital parameters, systolic blood pressure emerges as the most significant predictor associated with mortality prediction. Using a fivefold cross-validation method, several ML classifiers are used to categorize the last 24 hours of time series data after ICU admission into three groups: recovery, death, and intubation. Notably, the optimized Gradient Boosting classifier exhibited the highest performance in detecting mortality, achieving an area under the receiver-operator curve (AUC) of 0.95. Through the integration of electronic health records with this ML software, there is the promise of early notifications regarding adverse outcomes, potentially several hours before the onset of hemodynamic instability

    Micro-structural and functional properties of TiAlCN/VCN coating produced by High Power Impulse Magnetron Sputtering Technology.

    Get PDF
    Nanoscale TiAlCN/VCN multilayer coating was deposited in an industrial size 1000x4 Hauzer Techno Coating machine capable to operate with both unbalanced magnetron sputtering (UBMS) and high power impulse magnetron sputtering (HIPIMS) mode. The work was directed to study the impact of HIPIMS on the microstructure of the nanoscale TiAlCN/VCN coating, in relation to its properties at both room and elevated temperatures.TiAlCN/VCN coatings were deposited by three different ways in combination of reactive UBM and HIPIMS technique. These are (i) reactive pure UBMS, (ii) reactive combined UBMS and HIPIMS, (iii) reactive pure HIPIMS. The microstructure and mechanical properties of the nanoscale TiAlCN/VCN coatings deposited in all the above combination of deposition have been studied. In all three cases, coatings were deposited in three major steps: (a) HIPIMS etching by Ar[+] + V[+] ions (b) a 300 nm thick TiAIN base layer deposition in Ar + N[2] atmosphere followed by 2.5 pm thick TiAlCN/VCN coating deposition in mixed Ar+N[2]+CH[4] reactive atmosphere. PVD chamber furnished with two pairs of opposing magnetrons with TiAl and V targets were utilised deposit this coating. During the second case of combined deposition, two opposing magnetrons were enabled to operate in HIPIMS mode and other two magnetrons were operated in UBMS mode, where as in third case only two opposing targets with HIPIMS power supply were utilised to deposit the TiAlCN/VCN coating respectively. In all the three cases, deposition parameters such as bias voltage (U[b] = -75V), deposition temperature (T[s]= 450 °C) and total pressure of reactive gas mixture (Ar+N[2]+CH[4]; P = 4 X 10[-3] mbar) were maintained at similar conditions.The V+ HIPIMS etching used in all three processes has shown excellent adhesion (Lc>50) of the coating to the substrate. The plasma compositional analysis of V+ HIPIMS etching has shown high metal-to-gas ion ratio with ionization states of V up to 5+. The ionic composition of the HIPIMS plasma as a function of discharge current was analysed by plasma sampling using energy-resolved mass spectrometery. During the coating of TiAlCN/VCN, the plasma analysis has confirmed the higher production rate of metal ions and free carbon in case of HIPIMS-UBM in contrast to pure UBM. This has resulted to a denser closed columnar microstructure of the coating during the HDPIMS-UBM technique than UBM. The formation of graded like microstructure achieved during reactive pure HIPIMS case, further plants the importance of HIPIMS in producing advanced nanostructured coatings for high technology applications. (Abstract shortened by ProQuest.)

    On the performance of stabilized α-nickel hydroxide as a nickel-positive electrode in alkaline storage batteries

    Get PDF
    The internal resistance of a stabilized α-nickel hydroxide electrode is found to be lower than that of a β-nickel hydroxide electrode as shown from studies of the open-circuit potential-time transients at all states-of-charge. Nevertheless, the self-discharge rates of the former is higher. Gasometric studies reveal that the charging efficiency of the α-nickel hydroxide electrode is higher than that of the β-nickel hydroxide electrode. © 1995

    Vibration Control of Flexible Spacecraft Using Adaptive Controller

    Get PDF
    The aim is to develop vibration control of flexible spacecraft by adaptive controller. A case study will be carried out which simulates planar motion of flexible spacecraft as a coupled hybrid dynamics of rigid body motion and the flexible arm vibration. The notch filter and adaptive vibration controller, which updates filter and controller parameters continuously from the sensor measurement, are implemented in the real time control. The least mean square algorithm using the adaptive notch filter is applied to the flexible spacecraft. This study will show that the adaptive vibration controller successfully stabilizes the uncertain and it will accurately control the vibration of flexible spacecraft. The Least mean square  algorithm is applied in flexible spacecraft to attenuate the vibration. The simulation studies are carried out in a Matlab/Simulink environment

    Calcium-Ion Batteries: Identifying Ideal Electrolytes for Next-Generation Energy Storage Using Computational Analysis

    Get PDF
    Calcium ion batteries show promise as a high-density, next generation replacement for current lithium ion batteries. The precise chemical structure of the carbonate electrolyte solvent has a large impact on calcium battery efficacy. In this computational study, we have investigated the solvation behavior of calcium tetrafluoroborate in both neat carbonates and carbonate mixtures using combined molecular dynamics simulations and quantum mechanical calculations. Our results indicate that both neat ethyl methyl carbonate and a mixture of ethylene carbonate and diethyl carbonate show the highest free-energy of solvation for the Ca2+ ion, making them likely candidates for further focus. The cation’s interaction with the carbonyls of the coordinating solvents, rather than those with the tetrafluoroborate counterions, play the primary role in delocalizing the charge on Ca2+. Detailed calculations indicate that the HOMO-LUMO energy gap (Eg), electronic chemical potential (μ) and chemical hardness (η) of the calcium-carbonate complexes are directly proportional to the free energy of solvation of the complex. Comparison of these observed trends with our previous results from Li+, Na+ and Mg2+ ions show that this correlation is also observed in solvated magnesium ions, but not in lithium or sodium salts. This observation should assist in the rational design of next generation battery materials in the rational selection of additives, counterions, or electrolyte solvent

    The effect of ionic liquid adsorption on the electronic and optical properties of fluorographene nanosheets

    Get PDF
    In the present study, we investigate the adsorption characteristics of six different ionic liquids (ILs) on a fully-fluorinated graphene (fluorographene, FG) surface using electronic structure studies and associated analysis methods. A systematic comparison of differences in IL binding energies (ΔEb) with fluorographene, graphene and hexagonal boron nitride surfaces indicates that fluorination strongly decreases the binding energy compared to the other two surfaces, hence resulting in the binding energetics: ΔEb (Graphene…IL) \u3e ΔEb (Hexagonal boron-nitride…IL) \u3e ΔEb (Fluorographene…IL). To probe the reasons for this difference, quantum theory of atoms in molecules (QTAIM) analysis and non-covalent interactions (NCI) analyses were carried out. Results indicate that the stability of complexes of FG surface with ILs (FG…IL) arises only due to the presence of the expected weak non-covalent intermolecular interactions. The calculation of charge transfers by employing the ChelpG method shows that the interaction of ILs with FG surface generally induces a negative charge on the FG surface. Furthermore, these interactions lead to a decrease of the HOMO-LUMO energy gap (Eg) of the FG surface, enhancing its electrical conductivity. In addition, a detailed analysis of the global molecular descriptors including the Fermi energy level (EFL), work function (WF), electronic chemical potential (μ), chemical hardness (η), global softness (S) and electrophilicity index (ω) was carried out for both the FG surface alone and the adsorbed complexes showing that there are small, but meaningful, differences in the reactivity of the surface depending on the nature of the IL. Finally, time-dependent DFT (TD-DFT) calculations of the optical properties of FG surface and FG…IL complexes reveal that the absorption spectrum of the FG surface undergoes a red shift following IL adsorption. This study demonstrates that FG provides a useful complementary tool to graphene and boron nitride materials, allowing for the fine-tuning of the optoelectronic properties of these monolayer materials. These results will assist in the development of these types of ILs for applications in optoelectronics

    Electrochemically Impregnated Aluminum-Stabilized α-Nickel Hydroxide Electrodes

    Get PDF
    Nickel-positive electrodes obtained by electrochemical impregnation of aluminum-substituted α-nickel hydroxide are found to deliver a reversible discharge capacity of ca. 450 mAh/g. This is much higher than the capacity of β-nickel hydroxide electrodes 200 mAh/g: this work; 225 mAh/g: Dixit et al., J. Power Sources, 63, 167 (1996) prepared under identical conditions and pasted electrodes comprising cobalt-doped nickel hydroxide 345 mAh/g: Faure et al., J. Power Sources, 36, 497 (1991). These observations suggest that the theoretical target-capacity for high-performance nickel-positive electrodes must be revised from the currently accepted value of 289 mAh/g (1e exchange) to 491 mAh/g 1.7e exchange: Corrigan and Knight, J. Electrochem. Soc., 136, 613 (1989). © 1999 The Electrochemical Society. S1099-0062(98)08-044-4. All rights reserved
    corecore