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ABSTRACT

Nanoscale TiAlCN/VCN multilayer coating was deposited in an industrial size 

1000x4 Hauzer Techno Coating machine capable to operate with both unbalanced 

magnetron sputtering (UBMS) and high power impulse magnetron sputtering (HIPIMS) 

mode. The work was directed to study the impact of HIPIMS on the microstructure of 

the nanoscale TiAlCN/VCN coating, in relation to its properties at both room and 

elevated temperatures.

TiAlCN/VCN coatings were deposited by three different ways in combination of 

reactive UBM and HIPIMS technique. These are (i) reactive pure UBMS, (ii) reactive 

combined UBMS and HIPIMS, (iii) reactive pure HIPIMS. The microstructure and 

mechanical properties of the nanoscale TiAlCN/VCN coatings deposited in all the 

above combination of deposition have been studied. In all three cases, coatings were 

deposited in three major steps: (a) HIPIMS etching by Ar+ + V+ ions (b) a 300 nm thick 

TiAIN base layer deposition in Ar + N2 atmosphere followed by 2.5 pm thick 

TiAlCN/VCN coating deposition in mixed Ar+N2+CH4 reactive atmosphere. PVD 

chamber furnished with two pairs of opposing magnetrons with TiAl and V targets were 

utilised deposit this coating. During the second case of combined deposition, two 

opposing magnetrons were enabled to operate in HIPIMS mode and other two 

magnetrons were operated in UBMS mode, where as in third case only two opposing 

targets with HIPIMS power supply were utilised to deposit the TiAlCN/VCN coating 

respectively. In all the three cases, deposition parameters such as bias voltage (Ub = - 

75V), deposition temperature (Ts = 450 °C) and total pressure of reactive gas mixture 

(Ar+N2+CH4; P =  4 X  10- 3  mbar) were maintained at similar conditions.

The V+ HIPIMS etching used in all three processes has shown excellent 

adhesion (Lc>50) of the coating to the substrate. The plasma compositional analysis of 

V+ HIPIMS etching has shown high metal-to-gas ion ratio with ionization states of V 

up to 5+. The ionic composition of the HIPIMS plasma as a function of discharge 

current was analysed by plasma sampling using energy-resolved mass spectrometery. 

During the coating of TiAlCN/VCN, the plasma analysis has confirmed the higher 

production rate of metal ions and free carbon in case of HIPIMS-UBM in contrast to 

pure UBM. This has resulted to a denser closed columnar microstructure of the coating 

during the HDPIMS-UBM technique than UBM. Whereas in case of reactive pure



HIPIMS case, production rate of metal ions were appeared to gradually reduce at the 

expense of more free carbon production. XTEM analysis of pure HIPIMS deposited 

coating revealed the formation of three zones with different nanostructures across the 

film thickness. In the initial stages of deposition a TiAlCN/VCN nanoscale multilayer 

structure was formed (first zone) followed by a nanocomposite structure comprising 

TiAlCN/VCN crystalline grains surrounded by a carbon rich tissue phase (second zone). 

The grain size of the crystalline phase gradually decreased with thickness from diameter 

of 10-15 nm to complete dissolution in the third zone where Me- carbon with XRD 

amorphous structure was formed. In dynamic oxidation conditions, thermogravimetric 

analysis determined the temperature of the onset of rapid oxidation to be 800 °C for 

pure HIPIMS deposited coating. Compared to UBM and HIPIMS-UBM deposited 

TiAlCN/VCN coating, the oxide mass gain of the HIPIMS coatings was less than 30- 

50%. A dry sliding wear tests were conducted at room temperature and different 

elevated temperatures of 200°C, 450°C, and 650°C on coatings deposited by all three 

cases. The friction coefficient was found to be p= 0.45 at room temperature, where the 

coefficient steadily decreased from 0.7 at 200°C, to 0.5 at 450°C and 0.4 at 650°C 

respectively. The scanning electron microscope and X-ray diffraction studies of the 

oxidised surface of the UBM and HIPIMS-UB deposited coating has revealed the 

formation of lubricant Magneli phase oxides of V2O5 and UO 2 at elevated temperature. 

The wear coefficient of the coating deposited by (HIPIMS-UBM) has shown two orders 

of magnitude lower value than that for the UBM deposited coatings, which represents 

significant advantage for coatings deposited by UBM. The wear coefficient in case of 

HIPIMS deposited coating reduces by one order of magnitude with the wear depth, with 

initial value of Kc = 3.8 x 10‘15 n^N 'W ^fter 500 laps to IQ = 4.4 x 10‘16 ir^N 'W ^fter 

10000 laps. In comparison, UBM deposited TiAlCN/VCN coatings tested under similar 

conditions show an order of magnitude higher wear coefficient of 4.1 x 10‘15 n^N^m ' 1 

thus demonstrating the beneficial effect of the HIPIMS process. This peculiar wear 

behaviour is believed to result from the graded coating phase and micro structures of 

TiAlCN/VCN coating deposited by this pure HIPIMS technique. The overall enhanced 

performance in oxidation resistance, dry sliding wear conditions at room and elevated 

temperatures can be attributed to the extremely dense structure resulted by high energy 

bombardment achieved due to more metal ion production during HIPIMS. The 

formation of graded like microstructure achieved during reactive pure HIPIMS case, 

further plants the importance of HIPIMS in producing advanced nanostructured 

coatings for high technology applications.
IV
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CHAPTER 1 

Introduction

1.1. Motivation

Advanced fast growing industries like automotive and aerospace are facing the 

challenging problems of high speed cutting (HSC) and forming of soft and metallurgical 

aggressive materials such as Ti-, A1-, and Ni- based alloys [1]. During HSC machining 

operations, huge amount of heat is generated (with temperatures exceeding 700°C), 

which accumulates at the cutting edge. Since the above mentioned soft alloys have poor 

thermal conductivity and poor transfer of heat to the outgoing chip (especially Ti and 

Ti- based alloys), the counterpart should possess good thermal conductivity to dissipate 

heat away from the contact area of the cutting edge. One solution to this problem is the 

use of advanced tool protective coatings deposited by PVD methods. The overarching 

challenges in the current PVD technology is also to provide nanostructured multilayer 

coatings suitable for machining of above mentioned “sticky” alloys [1]. Essential 

requirements for successful tool coatings are high density, smooth surface morphology, 

high adhesion, and high wear resistance at cutting temperatures, low friction, good 

oxidation resistance, chemical stability and inertness relative to the work piece [2 ].

The early generation transition metal containing Nitrides, Carbides and 

Carbo-Nitride based monolayer coatings (TiN, CrN, TiCN,) were used 

substantially in machining carbon and alloy steels [3]. These coatings have 

been successfully developed by both CVD and PVD technology. But in the 

later stages of the research studies reveals that PVD technology was preferred 

over CVD technique to deposit coatings protecting the tools. The reasons are as 

follows [4]:

(i) Relative ease of deposition at lower temperature which preserves hard

metal edge toughness, (ii) less compressive stress which helps to inhibits

cracks on the surface, (iii) easy to deposit on sharp cutting edges without

changing the interfacial reaction by product, (iv) fine grain structures can be

achieved with higher microhardness, (v) less hazardous to environment

compared to CVD process. However, the poor temperature stability of these

monolayer coatings lead to a higher wear rate of the coated tool (due to tribo-
1



oxidation) which in turn shortened its life time and restricted its use at elevated 

temperature range [5]. Although, TiAIN coatings provide efficient protection 

against tribo-oxidation and wear at 700°C -850°C range when machining 

various steels, the higher friction coefficient value (p~0.85) has paved the way 

to explore more suitable coatings especially when machining of softer alloys is 

concerned. The reasons are the formation of huge build-up-edge (BUE) due to 

diffusion reaction with the work piece material, rough surface and high 

coefficient of friction against the ceramic nitride coatings [6 ]. Confronting 

these situations, compositionally modified Ti-Al-C-N based coatings, metal- 

carbon containing nanocomposite coating and DLC (Cr/WC/a-CH) coatings 

have been introduced which have shown a considerable success in the market 

for the machining of these "sticky" alloys. Particularly the highly inert DLC 

coating have shown reduced BUE formation, however, due to adhesion 

problems, their life time is still insufficient [1]. Over-stoichiometric carbon 

based nanocrystalline/amorphous structured coatings (TiC/a-C) have also 

found their importance in low friction and wear resistance applications [7], but 

their poor thermal and oxidation resistance restricts wider applicability in 

cutting tools/machining industries [8 ].

Low friction in dry sliding conditions has been achieved by incorporating V in the 

coating constitution. It has been shown that an increasing content of V incorporated in 

monolithically grown Ti-Al-N coating leads to decreased friction coefficient value at 

elevated temperature [9]. This has been attributed to the formation of several V -0 

phases (Magneli oxide phases), which provide easily shearable crystallographic planes 

along with the formation of low melting point (650°C ) oxides such as V2O5, which act 

as a solid lubricant in the tribocontact [1 0 , 1 1 ].

Recently, new class V- based nanoscale multilayer Tii.xAlxN/VN coatings deposited 

by the latest PVD techniques such as unbalanced magnetron sputtering (UBM), high 

power impulse magnetron sputtering (HIPIMS) and mixed HIPIMS-UBM have been 

very successful in machining of "sticky" alloys [1], The nanolaminate structure provides 

a new tool for enhancement of the solid lubrication mechanisms at elevated temperature 

but requires further understanding of the thermal stability of the coating materials in 

order to retain the integrity of the coating and avoid intermixing of the multilayers 

which often leads to degradation in performance. Although the TiAlN/VN multilayer 

coating has proved to be a very good alternative to machining A1-, Ti-, and Ni-based



soft alloys, the tribofilm which forms during the machining process was found to bond 

to the worn surface, so complete avoidance of the BUE was not achieved [1]. Another 

type of carbon based multilayer coating combining the abrasive material TiAIN and 

friction reducing WC/C was developed, i.e, TiAlN/WC/C coating designed for 

protecting drill for dry machining applications. But the top layer WC/C is easily 

abraded away during the machining process [4].

After the deep retrospection on earlier efforts and pros and cons in field of cutting 

tool application, P.Eh.Hovsepian et.al., developed a carbon based nanostructured 

coating for the wear applications at elevated temperature. This involves TiAlCN/VCN 

and CrAlCN/CrCN. These coatings have shown considerable assurance to protect tools 

at elevated temperature applications [12, 13]. These coatings have revealed the ability to 

adapt self lubrication during sliding at elevated temperatures, (700 °C ) by forming 

variety of Magneli phase oxides such as A1V0 4 , Tin0 2 n, Vn0 2 n WnCWi and achieved 

low friction force against the work piece material [14]. In case of TiAlCN/VCN 

nanoscale coating, it was shown that besides the formation of magneli phases, carbon 

atoms segregated at the interfaces between the individual nanolayers change the wear 

mechanism of the coating by providing low shear strength interfaces as well as reduce 

friction due to a graphitization mechanism taking place during sliding at elevated 

temperatures 300 "700 °C [14]. Thus during the dry sliding, weak atomic bonding , low 

decohesion energy of magneli oxide phases [15] and graphitic nature of carbon along 

with special nanolaminate layered structure of the TiAlCN/VCN coating was realized as 

a unique combination in stabilizing the friction and wear behavior of the coating. The 

relatively low friction coefficient values of p=0.45 at room temperature which reduces 

to p=0.38-0.4 at elevated temperatures, 300 ' 700 °C and wear rate of the order 10"17 

m3/N/m at room andlO"15 m3/N/m at elevated temperatures have made TiAlCN/VCN 

coating [14] a potential candidate for application such as protective tool coating.

1.2 Purpose of present research work

In the present market, number of tool protective coatings and suitable 

technologies are available. It is well understood that a competitive coating performance 

requires proper material, microstructure and deposition technology selection. 

Deposition techniques influence strongly the coatings microstructure, and, therefore, 

their performance, due to differences in the plasma conditions intrinsic to the method. 

High Power Impulse Magnetron Sputtering (HIPIMS) is an emerging technology which
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provides new alternative in the fabrication of nano-scale multilayer structures 

[16]. The unique aspect of the HIPIMS discharge is the production of highly ionised 

plasma containing almost equal concentration of gas and metal ions with higher energy 

states [17].

The important purpose of this research work was to depict the difference 

between HIPIMS and UBM technologies in the production of nano-structured 

TiAlCN/VCN coating, and thereby to enhance its functional properties. Further, it was 

also our purpose to investigate the HIPIMS and UBM plasma properties during the 

deposition of nanostructured TiAlCN/VCN coating to further correlate the impact of 

plasma chemistry on the microstructure of as deposited coating which intum impact on 

the functional properties. Previous research has confirmed unambiguously that when 

HIPIMS plasma is used for surface pre-treatment enhanced adhesion is achieved due to 

the production of atomically clean interface, preserved crystallinity of the substrate 

material and the promotion of local epitaxial growth of the coating over large areas [18]. 

It has also been shown that during the deposition, higher metal-to-gas ion ratio, higher 

dissociation rate of reactive gas, higher metal ionisation degree and higher energy of the 

condensing species attained in HIPIMS produces denser coatings by eliminating 

columnar voids formed due to atomic shadowing effect often observed in lower ion 

bombardment energy processes such as UBM for example [16, 19].

The past ten years of research on HIPIMS technology has clearly shown its 

importance in several aspects when compared to UBM technology. The following table 

compares briefly the differentiate between these above technologies, which helps the 

reader to understand the purpose of author in utilising HIPIMS technology.
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HIPIMS UBMS

High power density pulses applied on 

target with controlled duty cycle, which 

leads to achieve high plasma density near 

target vicinity

Constant DC power applied on target with 

relatively less plasma density near the 

target vicinity

High metal ion (>1) -to-neutral ratio
Metal ions (<1) are significantly less when 

compared to neutrals

Effective technology for surface 

pretreatment where etching mechanism is 

predominantly by metal ions; lead to 

highly crystalline coating-substrate 

interface and good adhesion

Comparatively inferior technology for 

surface pretreatment where gas ion 

bombardment is predominant which could 

lead to amorphous interface and 

subsequently results in defective coating 

growth and poor adhesion

Highly stable transition zone for reactive 

sputter deposition

Transition zone during reactive deposition 

is not stable and frequent plasma 

monitoring is necessary

Denser coating with smooth coating 

surface morphology without following 

conventional columnar coating growth

Under dense columnar coating growth is 

often observed with relatively rough 

surface morphology

Enable very successful uniform coating 

deposition on variety of complex shaped 

substrates

Line of sight deposition method where 

atomic shadowing effect leads to poor 

coating coverage on complex shaped 

substrates

Enable to deposit coating with strong 

desired texture and efficient control over 

phase composition

Very difficult to achieve desired texture 

and phase composition control is poor
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After revealing the importance HIPIMS over the conventional UBM technique, it was 

the major purpose of the authors to inculcate HIPIMS for the deposition of 

TiAlCN/VCN coating to enhance its functional properties for both at room and elevated 

temperature application.

In order to full fill the purpose a systematic approach was undertaken. The 

nanostructured TiAlCN/VCN coating was deposited by three different methods, these 

are (i) HIPIMS/UBM (ii) HIPIMS/(HIPIMS-UBM) and (iii) HIPIMS/HIPIMS. In the 

first case, HIPIMS was utilized for only surface pretreatment of substrates and UBM 

was used to deposit the coating part. In the second case, the HIPIMS has been utilized 

for both surface pretreatment and coating was deposited by mixed 

HIPIMS/UBMtechnique. In the final case, reactive deposition was carried out by only 

HIPIMS tehchnology. The aim of this work is to show the effect of HIPIMS, when 

employed in both surface pretreatment and coating deposition steps, on the 

microstructure, oxidation resistance and thermal stability at elevated temperature of 

TiAlCN/VCN nanostructured multilayer coatings. Hence a comparative study has been 

carried out of the microstructure and isothermal oxidation of TiAlCN/VCN 

nanostructured multilayer coating deposited by pure UBM and mixed HIPIMS-UBM 

techniques. Further, in order to understand the impact of HIPIMS alone, the 

TiAlCN/VCN coating was deposited by reactive pure HIPIMS alone. Subsequent 

investigation involves the micro-structural and functional properties of the 

TiAlCN/VCN nano-scale coating, deposited by higher fraction of metal (Ti, A1 and V) 

and carbon ions identified [20] in pure reactive HIPIMS plasma.

1.3 Methods of approach

According the aim of this particular research work, the approach was set in three 

different parts by depositing the TiAlCN/VCN nanostructured coating by three different 

ways in combination of UBM (Unbalanced magnetron sputtering) and HIPIMS (High 

Power Impulse Magnetron sputtering) technique. The process was carried out in an 

industrial size Hauzer HTC 1000/4 PVD coater, furnished with four rectangular targets 

of size 400x600 mm. Prior to deposition of the coating, substrate pretreatment (etching) 

was carried out by HIPIMS in all the three cases. During the deposition of the coating, 

deposition parameters were kept similar in all the three techniques. In the first part of 

the work, coating was deposited by UBM technique, where coating was deposited by 

reactive pure UBM technique. In the next part of the work, coating was deposited by
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mixed (HIPIMS-UBM) technique and in final part of the work coating was deposited by 

reactive pure HIPIMS technique.

The aim of the research work was to understand the impact of HIPIMS on the 

microstructure of TiAlCN/VCN coating and investigating the functional coating 

properties (oxidation, tribological) at both ambient and non ambient atmospheres. 

Hence, in all the three different cases of deposition, the deposition parameters such as 

gas pressure, average target power, bias voltage, and coil current were not altered in 

each case. The bias voltage during etching and coating deposition step was Ub = -1000 

V and -75 V respectively. Hence, the plasma diagnostic has to be carried out in a 

laboratory scale ultra high vacuum chamber to further understand the importance of 

HIPIMS plasma over conventional UBM during the deposition of TiAlCN/VCN 

coating. In this direction, the energy resolved mass spectrometer was used to identify 

the ionic composition of the UBM and HIPIMS plasma separately. During the plasma 

analysis, the deposition parameters were kept similar to that of actual deposition of the 

coating in industrial sized machine.

After the deposition of TiAlCN/VCN coating by three different processes, a 

comparative analysis of the coating microstructure and performance was carried out. 

The micro-structural analysis was carried out by cross sectional SEM and TEM 

analysis. This was very important to correlate between the microstructure and the 

functional property of the coating. Thermogravimetric analysis was carried out in order 

to understand the thermal stability of TiAlCN/VCN coating, which is very essential if 

the coating performance has to be known at elevated temperature. The tribological 

performance of the coating was also carried out which was very important aim of the 

research work. The tribological tests were carried out at both room and elevated 

temperatures of 200 °C, 450 °C and 650 °C respectively. These tests were conducted at 

laboratory scale. Also, the coating was deposited on complex shaped machining tool 

substrate by HIPIMS/UBM and further importance of the HIPIMS and coating has been 

realised after carrying high speed machining operation of aerospace grade AlSi alloy. 

As obtained results for high speed machining operation was compared with previously 

reported high speed machining results for the same coating when deposited by UBM 

technique, under similar deposition conditions.
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1.4 Structure of thesis

A brief review has been done in the chapter 2, which explains the important 

aspects related to Physical Vapour deposition (PVD) and its successful research and 

development toward advanced device fabrication industry. Further, important 

discussion proceeds on thin film microstructure evolution, which was assumed to be a 

fundamental base for understanding kinetics of thin film growth. Also, advanced 

nanostructured coating such as multilayer coatings, carbon based nanocomposite 

coatings, DLC etc. and its application and deposition methods have been reviewed, 

which also gives a motivation for further research and development work.

Chapter 3 describes the experimental details of this research work. Section 3.1 and 3.2 

explains about the deposition related aspects in which substrate material preparation 

prior to the coating deposition, methods carried out during the deposition and process 

parameters used for the deposition of TiAlCN/VCN nanoscale coating by UBM, 

HIPIMS-UBM and pure HIPIMS have been discussed. Section 3.3 explains about the 

fundamental mechanical and tribological characterization techniques utilized in this 

work. Section 3.4 explains the plasma characterization technique used to investigate the 

plasma chemistry of UBM and HIPIMS plasma generated during the deposition of 

TiAlCN/VCN coating. The section 3.5 to 3.9 explains the phase, oxidation and 

microstructure analysis techniques carried out in this research work, such as XRD, 

Raman, TGA and SEM, TEM.

Final two chapters 4 and 5 illustrate the important results obtained and relevant 

discussion pertaining to the results.
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CHAPTER 2

Literature Review

The objective of this chapter is to give the reader a perspective on latest 

advancement in sputtering based plasma processing techniques which are utilized in 

high technology applications. The discussion will begin with fundamentals of plasmas 

followed by most fundamental plasma generation method which is well known DC 

discharge. Further, review has been done on magnetically enhanced DC discharge. 

Based on this discharge principle, literature review was also carried out on most 

advanced ionised physical vapour deposition (DPVD) coating technologies; this includes 

Cathodic Arc, Unbalanced Magnetron Sputtering (UBMS) and High Power Impulse 

Magnetron Sputtering (HIPIMS) technique. The basic principle behind these two 

technologies has been reviewed in order to understand the importance of deposition 

parameters such as metal-to-gas ion ratio and its impact on the film microstructure 

during coating growth, which further helps to understand coating performance and its 

functional properties in real world applications. The fundamental mechanism of 

microstructural evolution and coating growth was also reviewed to gain more 

knowledge on the importance of ion bombardment during PVD coating growth. The 

basic microstructural discussion has been done on Nanoscale multilayer structure, 

Nanocrystalline and Nanocomposite and graded like microstructures. At the end of this 

chapter reader can see the bonding configurations, structure and properties of traditional 

carbon based coatings to recently developed carbon based multilayer structures.

2.1 Physical Vapour Deposition Coating Technology (PVD)

Physical vapour deposition is a atomic deposition technique, in which material is 

vaporized from a solid or liquid source and transported in a vacuum or low pressure 

plasmas to the substrates where it condensates. This technique can be used to deposit 

thin films of elements and molecules and also of compound materials by the reaction of 

depositing material with the ambient gas environments (e.g. TiN) or with a co- 

depositing material (e.g., TiC). Examples to PVD processes are vacuum evaporation, 

ion plating, and sputter deposition. All the three techniques can be used to deposit films 

with thickness in the range of few nanometers to thousands of nanometers. The majority 

of thin films are deposited nowadays by sputter deposition techniques where material 

atoms are sputtered and ionised during the process and finally bombarded on to the
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substrate at low temperature to form the film. Figure 1 shows the two major types of 

PVD process.

<
Unbalanced —  HIPIMS

{
Magnetron

DCMS

(

Sputtering Diode

Triode
PVD

Resistive

Evaporation Inductive

E-beam

Figure 1 Hierarchy of PVD system

2.1.1 Fundamentals of Plasma

Over the last two-three decades, plasmas have been extensively studied and 

utilized in various fields of surface engineering processes with desired functional 

properties. Basically “Plasma” is quasi-neutral ionised gas containing a mixture of 

positive, negatively charged particles and few numbers of un-ionised neutral atoms or 

molecules. The fundamental mechanisms which sustain and stabilize the plasma are 

ionisation and recombination, excitation and relaxation. The detailed explanation of 

these processes can be seen in [21, 22]. All these mechanisms will be initiated as a 

consequence of inelastic collision between electron and neutral atom. The primary 

electron knocks out the outer most electron from the neutral atom and produces a 

positive ion along with two electrons. This process For example in Ar atmosphere can 

be equated as,

In order to sustain the plasma, it is very essential to maintain the balance between 

electrons and ions, as continuous recombination process (by 3-body collision) might 

reduce the number of electrons.

e + Ar —> Ar++2e —  (1)
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Hence to sustain the plasma, requires an additional external energy source which is
—)

electric field (E) in this case, can act on these charged particles and maintain the balance 

between electrons and ions produced by ionisation process. Effectively, the electric field 

can energise and accelerate the electrons produced during primary ionisation process, 

which results in to more ionisation due to further ionising collision process (avalanche) 

between these accelerated energetic electrons and neutral atoms. Besides electron 

impact ionisation, there are several other ionising collisions which takes place inside the 

plasma which sustains its glow, For example dissociative collision, ion-neutral atom 

collision, metastable-neutral atom collision, metastable-metastable atomic collision etc. 

But the ionising probability by these collision processes is very less compared to 

electron impact ionisation as electric field interact less with heavy ions and neutral 

atoms. Figure 2 shows the energy transfer mechanism from electric field to the electron 

[21].

Work done 

£e t 2
2 m ,

Acceleration

0 Electron

Acceleration

Ion

m t
? 2' p t  
e t

2 m t

Figure 2 Conceptual explanation of energy transfer from the field to the electrons and 

ions [Ref: 21].
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Figure 3 The electron energy distribution function; when electric field is applied and 

inelastic collision cross section [Ref: 22].

The average electron energy was reported to be about 2-8 eV. Whereas the average 

energy of ions and neutral atoms are much less (0.03 eV at 300 K) as compared to 

electrons due to their limited interaction with the electric field [21]. But in practice, the 

plasma processes will takes place in low pressure atmospheres. At these conditions 

electron energies are characterised by a term kTe, where Te is the electron temperature. 

The electron temperature (~ 23000 K) is always yield higher value than ion temperature 

(~ 500 K) and neutral gas atom temperature at low pressure plasmas. Thus, highly 

energetic electrons participate very effectively in high temperature plasma chemistry, 

although the actual temperature in the gas is low [23]. Following paragraph (A) briefly 

summarises about electron energy distribution function in glow discharge plasma with 

their energy state in terms of electron temperature Te.

A. Electron energy distribution [Fe(E)]

Figure 3 illustrates the electron energy distribution function in comparison with 

equilibrium Maxwellian distribution. In presence of electric field (E), the electrons will 

gain higher energy. Moreover, low pressure plasma conditions were expected to limit 

the electron energy loss due to lower chance of inelastic collisions of electrons with 

neutral gas atoms.
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Hence, the presence of electric field will over populates these electrons towards higher 

energy regions of Maxwellian distribution. Electron energy distribution functions are 

measured by electrostatic probe analyzer and its energy state is always characterised in 

terms of electron temperature Te.

B. Sheath, plasma potential (Vp) and floating potential (Vf)

Bulk plasma can be explained as a quasi-neutral region, where charge densities 

nearly cancel each other. The charge density neutrality was realised to disturb the bulk 

plasma at the plasma-solid interfaces. Here, the solid surface refers to surfaces of 

cathode and substrate walls. As a consequence there will be a potential drop across the 

solid surface. The potential drop across this region depends upon the charge separation 

between the bulk plasma and solid surface [24]. A schematic diagram of this plasma- 

surface interface is shown in Figure 4. This interface region is called “Sheath Inside 

the plasma, high temperature electrons (dominant negative charge careers) masses are 

less (1/1823 amu) than ionic mass. Their response to the applied electric field is quite 

random and faster than ions [21]. This electronic response inside the plasma and across 

the sheath varies with respect to whether electrode surface is non-conducting (also 

called Floating electrode) or conducting. If the solid surface is electrically neutral, the 

charge imbalance would slowly develop space charge (p) across the sheath by repelling 

electron and attracting ions towards it continuously. This space charge can be given as 

[24]:

e0[v*iF] = p (2>

Where, e0 = permittivity of free spacer 8.854 x 10" F/m,

V * E = variation of potential across the sheath, p =  rif — n e Space charge.

The charge flow across the sheath will be controlled by the electric field caused due to 

space charge p. At this situation, the potential formed inside the plasma is called 

“plasma potential (Vp) ”. The voltage associated with the isolated electrode wall is 

called “floating potential Vf”. The plasma potential is always positive with respect to 

the floating potential, i.e. Vf < Vp. The voltage VP — Vj will always repel the electrons 

and attract ions. In this way, sheath can be thought of as a region surrounded by 

positively charged plasma [21]. When the electrode is biased, i.e. if electrode is

13



conducting, the electric field changes and it allows net current to flow across the sheath

due to the modified space charge distribution and electric field E [24]. The amplitude of

this case is different than those in the case of the isolated (unbiased) electrode.

Figure 3 Schematic of plasma-surface interface region showing the potential drop from 
cp to zero, where X is distance from grounded electrode surface [Ref: 26].

Assuming "nes" as number of electrons with average velocity u es (averaged over 

Maxwellian form), moving randomly across the sheath edge at potential difference of 

VP — Vf ; the expression for electron current can be given as [24]:

this current is limited by the current source. The charge distribution and voltage drop in

V(x)

s X

1 — r e V 0  1
) e  =  ̂ e n esuesexp[ —  ] (3)

Where,

Similarly expression for ion current is given as [25],

(4)

Where, Q — average ion charge state

1
2 is Bhom velocity
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When electrode surface is floating, both electron current and ion currents flowing across 

the sheath edge are equal. In this situation the floating potential Vf can be given as

Vr = — —  ln [-^ -]  (5)J 2e l2nme J v 7

Based on above these equations, values of ] e , j i  and Vf were calculated respectively

for argon plasma which can be seen in [24]. When electrode surface is conducting or 

biased (second case), the charge separation becomes complex, so as Eq. (2). More 

elaborate explanation for Eq. (2) and solution for this equation finding the space charge 

that limits the current at biased condition have been explained by Child [26] and 

Langmuir [27].

C. Debye Length (AD)

If the bulk plasma is not disturbed, then the net coulomb interaction with a 

particular charge “q” (electron or ion) sums to zero. If suppose the plasma is perturbed, 

then the spatial variation in the potential V(x), with respect to this charge “q” always 

tries to oppose this perturbation. Conversely, this perturbation can be realised within 

certain distance from this charge “q” [21]. This length is termed as “Debye length”. The 

expression for this length can be given as:

(6 )

This length describes the effective perturbation attenuation length inside the plasma 

[21]. The sheath thickness is always greater than the Debye length with respect to the 

voltage across the sheath. Hence Debye length can be used to calculate Sheath thickness 

when the electrode is biased, and expression can be given as [24]:

s  =  —  (7)
3 U K  k T e  J

D. Plasma Frequency (f)

When plasma in equilibrium is perturbed by (E), there exist always a restoring 

force which attempts to re-establish the charge neutrality mechanism between ions and 

electrons. Electrons being less massive than ions, show fast response to these restoring
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forces. This restoring force is in turn directly proportional to the displacement of 

electrons from its equilibrium position. The equation for this restoring force exerted by 

(E), can be given as:

m * T t =  _ e <A>’ (g)

d A  - n e 2  .  / r .x

m^  = —  A W

Here, A is the displacement of electrons by electric field perturbation, which in turn is a 

function of time. The equation (9) is an equation for simple harmonic oscillator with 

angular frequency "a)e ", which can also be called in this case as “Plasma frequency”,
l

with the value of about 8.98 x 103 72e 2 Hz, where ne is the density per cm3. Since, the

interaction between ions and the electrons determine the plasma frequency; this can also 

be correlated to the Debye length. Time required for an electron to travel one Debye 

length is the time required for the electrons to shield the plasma from applied field (E), 

Hence the plasma frequency is equal to the inverse time required for an electron to 

travel a Debye length [21]. Approximately this frequency can be given as [26]:

o)e = 9000 (10)

So, plasma frequency "a)e " is the minimum frequency for propagation of longitudinal 

waves in the plasma.

2.1.2 Plasma Discharge

The Plasma discharge or glow discharge plasma generation is based on ionising 

the gas in a closed chamber by applying sufficient energy to it. This energy can be 

supplied either by DC or RF electric field. This electric field initiate the gas ionisation 

mechanism by energising stray electrons that can gradually ionise the background gas 

by inelastic collision (explained in previous section). Further through basic avalanche 

process, the plasma density increases and reaches steady state where ionisation rate 

equals the electron and ion loss rate. Most of the materials processing utilize nowadays 

this glow discharge plasmas to enhance their functional properties. The configuration or 

geometry and orientation of electric field used for this glow discharge plasma might
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differ with respect to individual materials processing. The following section discuss 

only about DC discharge as authors Ph.D thesis work is based on this principle. More 

detailed explanation on RF discharge mechanism and RF generated plasma can be read 

in [21].

A. The DC discharge

The most simple configuration and geometry utilized from history to produce 

glow discharge plasma is DC discharge configuration. Figure 4 shows simple DC 

discharge configuration where potential difference of (V) is created between two 

opposing electrodes (Cathode and Anode). In general a DC power supply will be used 

to create this potential difference. Though glow discharge plasma appears very simple, 

the bulk regions and boundaries inside the chamber containing plasma are complex in 

nature.

High-Voltage DC 
Power Supply >

AnodeCathode

Figure 4 Simple DC discharge. DC power supply is connected across cathode and 

anode [Ref: 28].

The DC discharge can be operated in different modes, such as by controlling the 

voltage, pressure and distance between the electrodes [22]. In a given chamber, all these 

conditions have to be considered properly for the plasma discharge glow. The Figure 5 

depicts normal glow discharge of neon gas in a chamber maintained at pressure of 1 

torr. Each region inside the glow discharge is explained below [22].
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Cathode dark space:

The region corresponding to sheath, where secondary electrons are accelerated and enter 

negative glow region assisting ionisation by excitation.

Negative glow:

Very bright glow region where predominant excitation-recombination mechanism takes 

place. In this region primary electrons were expected to consume fully their energy and 

it continues to extend until their travel distance from cathode.

Positive column:

Largely occupied discharge region between the cathode and anode. Most likely 

resembles plasma and hence predominantly used region for measurements carried out 

by classic probes. The electric field in this region assist in transporting the discharge 

current from negative glow to anode.

Aston
Dark Negative 

Space Glow 
(AD) v (NG)

Faraday
Space
(FS)

Cathode

Cathode
Glow

Cathode 
Dark Space

Positive
Column

(PC)

Anode 
Anode Dark 
Glow Space 
(AG) (AD)

Anode

Figure 5 A typical DC glow discharge regions (neon gas) in at p= 1 torr [21].

It was found that, when two electrodes were brought near to each other, the positive 

column was appeared to shrink without disturbing the negative glow and cathode dark 

space regions. It is very essential to keep minimum distance between the cathode and 

anode to sustain the glow discharge plasma. Sustaining the plasma continuously inside 

the chamber depends upon ionisation rate, which should be compensated with loss rate 

of ions and electrons by volume recombination process or due to bombarding with walls 

of the chamber. The rate of ionisation in turn depends upon the type of gas through its 

ionisation cross section, the gas pressure, and electric field which drives the electrons.
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These are the factors which decide the break down voltage of a gas which results in the 

sustained plasma discharge. The curves meeting the conditions for gas breakdown with 

respect to back ground pressure (for air and Ar) and inter electrode distance were 

obtained drawn by Paschen. Figure 6  shows the Paschen curves for gas breakdown 

between two electrodes in air and Ar atmosphere. These curves can be used to decide 

the exact operating conditions for steady plasma discharge.
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Figure 6  Paschen curve showing the possible gas (in air & Ar) breakdown conditions 

between electrodes at 20 °C [Ref: 22].

B. Secondary Electron Emission

Despite the energetic primary electrons, secondary electrons emitted from the 

cathode and chamber walls when particles strikes its surface, will also play a major role 

in sustaining the plasma. These surfaces will emit secondary electrons when 

bombardment occurs due to primary electrons, ions, neutrals. Individual bombardment 

types will lead to unique secondary electron yield. These secondary electrons are highly 

energetic, due to the energy they gain in the sheath region and accelerated towards the 

bulk region. Hence these secondary emissions are very important in sustaining DC 

discharge plasma as this will compensate electron loss process by increasing electron 

density in the bulk region and helping in higher ionisation rate. Further, these secondary
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electrons will also play a very significant role in the growth of sputtered film which will 

be discussed later.

2.1.3 Sputtering

Sputtering is a Non-thermal physical process where atoms are ejected from the 

solid surface when ions or neutral atoms with energy of few keV, are impinged on it. 

The kinetics of bombardment which leads to ejection of atoms from the surface is a 

function of series of binary collisions which can be characterised by energy transfer 

function given by [2 1 ]:

_  4m (m t 
(m i+ m t ) 2

Where, m t and m t are the masses of colliding species. From above equation, it is clear 

that sputtering of atoms also depends upon the mass of incident ions. Overall energy 

transfer is not restricted to single atomic layer, rather to several atomic layers beneath 

the surface through the collision cascade mechanism. During this collision cascade, 

momentum exchange is the dominant mechanism which sputters the atoms bound 

beneath the two or three atomic layers from the top surface. Sputtering can be measured 

by a quantity called “sputtering yield (S)”. Sputtering yield can be defined as the 

number of target atoms ejected per incident particle. This depends upon the type, energy 

and angle of incidence of the particle [22]. Figure 7 shows the experimentally 

determined sputtering yield for various metal targets as Ar+ ion energy under normal 

angle of incidence. Initially up to 20-40 eV sputtering yield low and gradually increases 

linearly until about 100 eV. At higher energies, the yield increases sub-linearly with ion 

energy. Detailed analysis of dependence of the yield on the angle of incidence can be 

seen in [27].

The sputtering mechanism discussed above is from targets composed of single 

chemical elements. But the sputtering process mechanism is equally valid for alloys or 

compound targets. In the former case, it is very essential to maintain the cooling of the 

target to avoid bulk diffusion of constituent species, homogeneity of target without its 

decomposition, and its cleanness.
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A. Sputter Deposition

Sputter deposition is the deposition of vaporised atoms ejected from a target surface, by 

physical sputtering process as explained in the above paragraph. The deposition 

processes are generally carried out in low pressure vacuum environment at working 

pressure of about than 5 mTorr to avoid gas phase collisions with the energetic 

sputtered particles. As sputter deposition technique nowadays are widely used in 

depositing thin films of hard coatings, coatings of architectural glass, magnetic films, 

semiconductor materials etc; in the coming sections of discussions reader can overview 

selective advanced sputter deposition techniques such as simple DC sputter deposition, 

Magnetically enhanced DC sputter deposition (DCMS), Cathodic arc deposition 

technique and High Power Impulse Magnetron Sputtering (HIPIMS) technique.

B. DC sputter deposition technique

V PLASMA
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CHAMBERVACUUM

PU M PS

Figure 7 A simple parallel plate DC sputter deposition system. [Ref: 22].

DC sputter deposition is based on DC discharge mechanism discussed in the previous 

paragraph. Figure 7 can be informative to understand the DC sputter deposition 

technique in detail. The material intended to be sputtered, which was called “Cathode” 

(DC discharge circuit), is now named as “Sputtering Target”. Generally, a high negative
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voltage (V) is applied to this target. The substrates are placed at a distance of few cm 

away from the cathode which are electrically grounded or conducting (biased) “Anode”. 

The whole system will be furnished in a vacuum chamber. Ar gas is introduced inside 

the chamber to some predetermined pressure value. The electric field will energise and 

accelerate electrons which in turn engage with collision with Ar atoms and result to 

ignite glow discharge plasma. Brief explanation on DC discharge plasma was discussed 

initially in this chapter. During this process, electrons will be attracted towards anode 

causing more ionisation; Ar+ ions will be attracted towards cathode, finally leading to 

sputtering. Due to this motion of charged particle discharge current “I” flows. The 

voltage “V” applied to the sputtering target, which drives the current “I”, depends upon 

the gas pressure “P” in the vacuum chamber [21]. The deposition rate in this case relies 

on the amount of atoms sputtered from the target, which in turn rely on the “plasma 

density” near the target. This plasma density is drives the current “I” linearly on the 

target. But as sputtering yield also decides the amount of sputtering atoms, voltage “V” 

also plays a very important role in the DC sputtering system. For most of the industrial 

purposes, planar target DC sputtering systems are used. The film properties directly 

proportional to the amount of metal ions sputtered from the target (necessarily high) and 

the amount of metal ions can be achieved by increasing the sputtering yield. Normal 

attempt to increase the deposition rate is by increasing the sputtering yield, i.e by 

increasing the target voltage “V”. Optimum operating conditions for DC sputtering 

system was given in [22]. Those are listed below:

Cathode current density -  1 mA/cm2

Discharge voltage-3 kV

Ar Pressure -  75 mTorr (10 Pa)

Deposition rate -  40 nm/min

Disadvantage of DC sputtering system:

High plasma impedance was observed which lead to very low discharge current of few 

mA/cm2 at higher target voltage of several kV.

Higher thermal load imposed on the target when operated at higher voltage, which could 

damage the target.
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Non-uniform sputtering of atoms leads to poor carriage of metal atoms to the substrate 

surface leading to poor quality films.

2.1.4 DC Magnetron Sputter deposition technique

In mid 1970’s the invention of magnetically enhanced DC sputtering technique 

by Chapin was considered to be a major breakthrough in thin film technology [29]. The 

aim of his work was to completely come up with the solution for the disadvantages 

found with conventional DC magnetron sputtering.

The process of ejecting atoms or molecules from magnetically confined solid

surface, in a low pressure, non-reactive/reactive ambient atmospheric conditions (of the

order 0.2- 2 millitorr) can be termed as "Magnetron Sputtering". The application of

magnetic field by connecting the magnets to cathode was realized after the necessity of

high purity film, high deposition rate, low working pressure, ease of sputtering any

metal, alloy or compound, with high adhesion to the substrate, ability to coat heat-

sensitive substrates, uniform deposition, etc. These were often difficult to achieve in

traditional vacuum coating techniques such as thermal evaporation and electron-beam

evaporation. The principle of magnetron operation can be known by understanding the

direction of magnetic and electric field confinement inside the vacuum chamber and

electron drift motion, which in turn depends upon the configuration of magnetron.

Basically, the magnetic and electric fields were configured on the cathode surface in
■■ > -  >

such a way that electrons drift current E x B would flow along its own closed loop [30, 

31]. The detailed explanation of electron motion under the influence of magnetic and 

electric field was explained in [32]. The trapped electron drift motion will be controlled 

only near the orbit of cathode sheath region as both fields are stronger near at this region 

and relatively week at larger distance. Thus, both magnetic and electric fields assist 

electrons to participate in the forced collisions with gaseous atoms and subsequent 

effective sputtering discharge to be sustained inside the vacuum cavity. In this manner 

the ionisation efficiency with the gas atoms was increased. As a result the impedance of 

plasma to electron motion reduces to voltages (500-600 V compared with several kV) 

less than that of traditional diode systems.
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The history of research and development in the PVD field has introduced variety of 

magnetrons configurations. For example, S-gun type magnetron, planar magnetron, 

cylindrical magnetron [33]. Figure 8  shows the more detailed design of planar 

magnetron system.
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Figure 8  Schematic of Magnetron Source [Ref: 34]

The simplicity in physical construction of planar magnetron and its ability to shape in 

any form/size, enable this system to utilize in most of the coating industries. Normally, 

the permanent magnets connected to target surface were used to produce tunnel shaped 

magnetic fields in front of the target surface as shown in the Figure 9. The research and 

development in the reconstruction of magnetron source, in order to achieve higher 

efficiency in its overall performance is active since 1980. The moving magnetic array 

beneath target was new attempt in this direction. By this modification the efficiency of 

target utilization was reported to be increased up to 80% [34, 36].
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Figure 9 Possible geometries of magnetrons with tunnel shaped magnetic fields 

[Ref: 34].

A. Advantages o f DC magnetron sputtering

The primary advantage of DC magnetron sputtering over DC sputtering can be 

seen in terms of (1) high deposition rate in the rage from 1 nm/s to 10 nm/s. (2) Very 

efficient in sputtering of metal, alloy or compounds with high purity films. (3) Good 

adhesion of coatings can be achieved with the substrates. (4) Ability to coat heat- 

sensitive substrates (5) comparatively good uniformity over the substrates with broadly 

tunable properties (6 ) High discharge currents of about 1 A to 100 A at typical voltage 

of 500 V can be achieved due to low impedance observed in the plasma.

2.1.5 Cathodic Arc deposition

Arc deposition techniques were utilized since 1970’s [37, 38] and still active in 

industrial applications for depositing metals and refractory compounds. This technique 

has demonstrated its efficiency in producing high density coatings with small grain size 

and higher adhesion to the substrates [39].

Arc discharge can be defined as the electrical discharges with high current of 

more than 1 A with low voltages of less than 50 V. The large discharge current is due to 

the collective electron emission mechanism from the cathode [40]. This collective 

emission can be (i) Thermionic or (ii) explosive. The detailed difference between these 

emissions can be read in [41]. Cathodic arcs can operate with cathodes at room 

temperature. In this case, electrons will be emitted at hot spots, non-stationary, micron
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size cathode spots [42]. Previous research articles have reported that these cathodes 

spots possess average current density of 10"12 Am'2. Some literature have articulated the 

cathodic arc as local “explosive” event where phase transformation of spot area leading 

to achieve fully ionised plasma densities in the cathode region up to 1020 m' 3 [43]. The 

generation of spots, its ignition and the life time on the cathode depend upon how 

thermal runway condition is achieved on the cathode surface [43]. Collective electron 

emission is a localised phenomenon, which is a result of high local electric field 

strength achieved on the cathode surface due to the voltage drop at sheath. This 

localised emission of electrons creates a spot which causes further localised ohmic 

heating of the emission sight. This process leads to higher electron emission with very 

high localized temperature reaching near the melting point of material (4000 to 7000 

°C). All these events occur in a less than 10 ns [40]. The plasma emitted from the spot 

expands at the rate of 104 m/s which contract the sheath thickness [40]. This contraction 

of sheath thickness leads to accommodate electric field within a very small volume near 

the target spot. This causes further increase in the electric field strength and initial new 

cathode spots within an area of 10 pm. These evaporated species are highly ionised and 

accelerated away from the sheath and deposited on the substrate. High content of 

multiply charged metal ion states, e.g., Me3+, Me4+ were reported to reach the substrate 

after getting ejected from the spot. Figure 10 explains the phenomenon occurring at 

cathode spots. Despite all the above advantages, the main disadvantage of this method is 

sputtering of droplets of target materials with sizes of 100-1000 nm [44, 45, 46]. These 

droplets are known to deteriorate the quality of deposited coatings. Also, it has been 

shown in some literatures that formation of these droplets initiate corrosion [47].
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Figure 10 illustrates the possible mechanism of plasma interaction during the cathodic 
arc deposition technique [Ref: 42].

2.1.6 Unbalanced Magnetron Sputtering

Usage of DC magnetron configuration for sputter deposition has marked some 

major drawbacks during the process; For example poor plasma density between the 

cathode and substrate. This was attributed to the escape of electrons to the surrounding 

chamber walls. This has imposed a major setback to achieve good quality films 

especially during reactive sputter deposition conditions where plasma activation of 

reactive species is important. An effective method was suggested by Window et al. [48] 

to unbalance the magnetic field and effectively breaking the plasma confinement near 

target and directing it towards the substrate. This has been a very successful design for 

magnetron sputter deposition till today especially in case of reactive sputter deposition. 

The major difference between “balanced” and “unbalanced magnetron” techniques is 

the trap of magnetic field lines surrounding the cathode. Figure 11 shows the magnetic 

field shape in both cases [49]. From the figure the advantage of unbalancing the 

magnetic field can be clearly understood. The electron motion in this case is normal to 

the target surface and reaches very easily toward the near substrate region. Whereas in 

balanced magnetic field geometry, the electron has to break several magnetic field lines 

to reach the substrate.
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T.E.Sheridan [50] has showed long range electron and ion transport in the unbalanced 

magnetron plasma which was attributed to an ambipolar diffusion process can be 

considered as further advantage in this geometry. S. Kadlec et al. has further proved the 

importance of unbalanced magnetron geometry during the deposition of tin, where ion 

to neutral flux can be increased by a factor of 6  [51].

Figure 11 Magnetic field lines on the cathode surface; (a) balanced and (b) unbalanced 

magnetron case respectively. [Ref: 49].

A. Closed field Unbalanced Magnetron Sputtering (CFUBM)

Closed magnetic field geometry was successfully implemented to array of four 

unbalanced magnetrons in later 1990’s [52, 53]. The intention was to increase the 

ionisation near the substrate during the coating deposition. The magnets of alternating 

magnetrons are arranged in the form where magnetic field shield the plasma is chamber 

volume without losing to chamber walls. Based on this concept W.D.Munz et al [54] 

introduced ABS machine to deposit hard coatings at industrial scale. Major advantage 

of this geometry is that plasma density can be accumulated in the centre of the chamber, 

which increases the ionisation efficiency and enhance ion flux to the substrates placed at 

the centre of the chamber. This sputter deposition technique enhanced the film 

properties in a large scale industrial application. The internal architecture of this
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geometry will be shown later as all the experiments of this work were carried out in this 

configuration.

2.1.7 High Power Impulse Magnetron Sputtering (HIPIMS)

In the early 1990’s, “impulse” induced ionised PVD (IPVD) technology, named 

HIPIMS was introduced. By definition of impulse means, atoms sputter from the target 

when peak power of individual pulse exceeds the time-averaged power by typically two 

orders of magnitude with long holds between individual pulses [55]. The technology has 

taken a new turn in the field of thin film coating and nanofabrication industries to 

deposit high quality films of metals, alloys, and ceramics, beside all these, very 

importantly in depositing insulating oxides and nitrides, such as A I 2 O 3 ,  ZnO and SnC>2. 

This was mainly attributed to the higher fraction of ionised sputtered material found in 

the HIPIMS plasma which significantly optimises the film growth and enhances the 

quality of deposited film.

The Initial stages of research on HIPIMS was started by Kouznetsov et al [56],

where significant increase of sputtered metal ionisation during the deposition was

achieved due to the utilization of pulsed power supply on Cu target. In this case, the

peak target power density attained on Cu target was reported up to 2.8 kW cm' , which

has resulted the peak ion current density value to reach up to 3.4 A cm' at the substrate.

Similarly, in many other examples of HIPIMS research, the target power values of >1

kW cm"2 was reported [57, 58-60]. These extremely high target power densities

dissipated during HIPIMS have produced highly dense metals and gaseous ions in the
10 1condensing flux of the plasma (order 10 m ') [57, 60-63] with more fraction of highly 

ionised metal ions compared to gas ions [61, 64]. Thus results obtained during HIPIMS 

deposition, such as dissipation of high target power density with high density metal ion 

plasmas condensing on to the substrates have enhanced ion bombardment on substrates. 

As a result the adatom mobility during the coating growth is accelerated on substrates. 

This has been a very essential impact of HIPIMS in producing defect free and more 

dense coatings when compared to conventional magnetron sputtering technique [65, 

6 6 ]. Besides densification of coating films, HIPIMS has also shown advantages in 

uniform deposition of coating with high-aspect ratio filling for complex shaped 

substrates [56] and enhanced adhesion of the coating to the substrate by surface 

pretreatement [67, 6 8 ].
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A. Electrical Parameter o f HIPIMS technique

The electrical parameters of the HIPIMS power supply provides necessary 

information on the nature of the pulses generated. During coating deposition, the applied 

individual pulses of HIPIMS known to deliver average energy of 2 to 8  MW, with typical 

peak voltages and current of up to 1 -2 kV and 1- 4 kA respectively. Although it is very 

important to retain the maximum power on the target which helps to produce high metal 

ion-to-neutral ratio, the target heating effect which could lead to target melting also needs 

to be considered. Hence, In HIPIMS the pulses were applied on the magnetrons with very 

low duty cycle (ratio of on-time to period of cycle), where power will be dissipated at 

each very short on-time intervals of the pulse generated by the power supply. Due to this 

unique pulsing behaviour of HIPIMS, the maximum power can be achieved on the target 

and uniform discharge can be maintained over the cathode area. Typical operating range 

of pulse width reported to be 50-500 ps, between frequencies of 15-500 Hz. The 

regulation of pulse width/shape is very important to decide the power required dissipating 

on the target. Hence, with respect to the design of power supply, pulses with varying 

width can be generated in above mentioned ranges. U. Helmersson et al. [69] suggested 

that the pulse width changes with different magnetron configuration, target material, 

magnetic field structure, gas pressure utilized during the deposition. For example in one 

of the reported article, the pulse width applied for the sputtering of tantalum target started 

to decrease when discharge pressure increased [70]. This can be seen in Figure 12 where 

the voltage and current waveforms have varied with respect to the changing HIPIMS 

discharge gas pressure.
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Figure 12. Temporal variation of cathode voltage and discharge current with respect to 

gas pressure [Ref: 69].

It has also been shown that due the decrease of discharge pressure, the plasma ignition 

was delayed by several ps. This has lead to design the HIPIMS power supply with pre­

ionising pulse generator [71, 72, 73-76] where plasma can be pre-ionised. The Figure 13 

illustrates an electric circuit diagram of HIPIMS pulse generator with pre-ioniser [75]. So 

far, different HIPIMS power supplies were designed which can be operated in different 

frequency range with different pulse widths to achieve respective target powers. For 

example, the pulse duration of 2-10 ms between the frequencies of 5-20 Hz has delivered 

peak power of 400 kW [59]. Kouznetsov et al. utilized the power supply generating the 

pulses with maximum power of 2.4 MW at repetition frequency 50 Hz and pulse widths 

of 50-100 ps. Likewise, Christie et al. reported on a power supply capable of producing 

peak power of 3 MW operating at single shot to 500 Hz and pulse widths of 100-500 ps.
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Figure 13 Circuit diagram explaining HIPIMS pulse generator with a pre-ioniser circuit 

[Ref: 69].

Ehiasarian et al. [76] demonstrated a HMP 6/16 pulse generator capable to supply 6  

MW power in 0-200 ps pulses at 0-100 Hz frequency. Besides maintaining the pulse 

width, HIPIMS power supplies have also designed to detect arcs and suppress it during 

the deposition. More arcing during the deposition process could be detrimental to the 

target and generate macroparticles. Christie et al. [77] and Sproul et al. [78] suggested 

two methods for detecting the arcs. One way is by noticing high threshold value of 

current and another way is by detecting the sudden decrease of voltage value. When this 

arc is detected the capacitor and inductor will be disconnected without any current 

flown through it. Further this inductor will be disconnected from the load, and thus 

produces few ps order delays in the discharge pulse [79]. Helmerson U. et al. [69] 

suggested that this delay in pulse length can be generated only if sufficient delay in 

discharge breakdown time is achieved. This can be accomplished by connecting low 

current dc pre-ioniser in the HIPIMS circuit (Figure B) [69].

B. Industrial scale up o f HIPIMS

Everlasting requirement for PVD coating industires are the production of defect free, 

highly dense microstructure with smooth surface morphology which enhances its 

functional properties in real world applications. Most of the ionised PVD techniques 

have shown their importance at laboratory scale to meet these requirements. But when 

considering the mass production on industrial scale, these plasma processing 

equipments technically failed in their efficient performance. For the first time HIPIMS 

power supply was connected to one of cathode in an industrial size PVD coating 

machine Hauzer HTC 1000/4, as shown in figure C. HIPIMS discharge was studies on



-1
Ti target in Ar atmosphere at a pressure of 1x10' mbarr. Highly ionised plasma

containing doubly charged Ti2+ with extremely high metal ion-to-neutral ration was

achieved for high power pulses applied at power densities of up to 3 kW/cm' generated

at discharge voltage of up to 2 kV. The metal ion-to-neutral ion ratio was reported to be
, 1 ,

increased due to the rapid increase in Ti , Ti metal ion intensity at the expense of TiO 

emission. This was attributed to the increase in the discharge current achieved during 

high power impulse applied on the target. Time evolution of HIPIMS discharge 

measured in this industrial scale experiment has shown the transition from gas to metal 

plasma within the pulse [80].

C. Substrate pretreatment by HIPIMS

Performance of the coating in most of the real world applications depends upon 

its adhesive bonding with the substrate on which it has been deposited. Substrate 

pretreatment prior to the deposition of coating deposition is very essential for this 

purpose and is a part of plasma processing. Pretreatment for substrate surface aims to 

remove contaminants existing on the surface, which might act as detrimental nucleation 

sights during the initial stages of coating growth and defies defect free coating. 

Although, several chemical sputtering processes are utilized for this purpose, the traces 

of oxygen contaminants still observed on the surface which paves the way to grow weak 

microstructure. Physical sputtering technique has shown significant advantage for 

pretreating the surface when compared to chemical sputtering technique. This technique 

implants the metal ions below the substrate surface to about 5-10 nm. This changes the 

gradient stress at smaller scale and improves the adhesion of the coating to the substrate. 

The depth of implantation range rt is directly proportional to the bombarding ion 

energy, can expression can be given as:

n ~  Ei2m (13)

Where, m = 1 at high energies and 0 at low energies [81]. The depth of implantation 

exclusively depends upon the nature of the ion, technology used to produce these ions. 

These factors influence the interface region in terms of diffusion bonding between the 

implanted ions and substrate lattice. Traditional surface pretreatment method by gas ion 

(Ar+, He+) flux have imposed major setbacks which can be read in [82, 83]. 

Alternatively, metal ion implantation was considered to be very consistent for this 

purpose, where Cr, Ti, Nb and other transition metals tend to form unbroken bonds with 

the substrate lattice. Work by Hovsepian et al. has showed a incorporation of Ti ions
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when arc technology was used for pretreatment by Ti ion. Majority of Ti atoms 

sputtered during arc pretreatment were found to be doubly and triply ionised with only 

20% of gas is ionised [84]. HIPIMS of Nb, V, and Cr was successfully used for surface 

pretreatment of High speed steel substrates prior to the deposition of CrN/NbN, TiAIN, 

and CrAIN coatings respectively [85]. Ehiasarian et al. showed that, HIPIMS pretreated 

interfaces in all the above three cases were atomically very clean without any oxide 

contamination. Moreover the crystallinity of the interface was not deteriorated. When 

compared with gas ion, and Arc etched coating-substrate interfaces, HIPIMS of metal 

ion etching has shown superior adhesion of the coating to the substrate.

2.2 Thin film microstructural evolution

The diverse application of polycrystalline films in the field of optics, electric, 

magnetic, mechanics and tribology, was realised in the mid 19th century when Sir 

William R. Grove discovered the mechanism of sputtering to deposit thin films [8 6 ]. 

The increasing demand of real world applications in above mentioned fields have also 

driven equal interest in understanding the mechanism behind the microstructural growth 

of thin films and procedures for its effective control. Thin films exhibit different 

microstructures, characterised by its grain size, crystallographic texture, phase and 

chemical composition. These individual characteristics can be varied by various 

atomistic deposition processes which follow its own parameters to control the 

microstructure. Extensive literatures are available, which describe the basic relationship 

between the film microstructure and plasma processing parameters influencing this 

microstructure. Understanding this relationship is very crucial since microstructural 

properties impact directly on the functional properties of thin films which decide its 

quality. Universally accepted model is Structure Zone Model (SZM) proposed by 

Movchan and Demchishin in 1969 [87] for the growth of Ti, Ni, W, ZrC>2, and AI2O3 

coating. The atomic odyssey explained in this model was based on shadowing, surface 

diffusion, bulk diffusion and desorption process. The sequence of these processes and as 

resulted microstructure of the film was modelled on the basis of melting temperature of 

condensates and substrate temperature. Detailed review of this model can be seen in 

[8 8 ]. Thus the importance of microstructure on the coating performance has led to 

further development of advanced models. Plasma enhanced PVD (PAPVD) processes 

allows tailoring of these microstructural properties by controlling the energy of 

bombarding ions during the deposition process. This energy of bombarding ions
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depends upon several factors such as ion-to-neutral ratio, substrate bias voltage etc. In 

following paragraphs, brief overview has been done on SZM for sputtered films.

A. Basic SZM for sputtered film

In early1977, J. A. Thornton [89] proposed a basic SZM for metal coatings of Ti, Cr, 

Fe, Cu, Mo and Al. This model was based on 20 to 250 pm thick coating deposited by 

magnetron sputtering. Figure 14 shows SZM explaining the evolution of morphology 

for above mentioned coatings based on substrate temperature and inert sputtering gas 

pressure (P). According to this model, at low temperature, i.e. lower Ts/Tm zone 1 

structure which appear in amorphous as well as crystalline deposits were reported to be 

the result of shadowing effects which leads to increase in adatom surface diffusion and 

subsequent thickening of film density [87]. As a result zone 2 evolves which can be 

attributed to the surface diffusion controlled growth. Grain coarsening process i.e., 

recrystallization through lattice and grain boundary (GB) migration was reported to be a 

dominant process at high temperatures [8 8 ], resulting into equixed recrystallized grains 

of zone 3. At the same conditions, dense array of poorly defined fibrous grains called 

zone T, a transition region between zone 1 and 2 occurs during coalescence of small 

islands with large surface to volume ratio. Mean while the GB migration reduces and 

crystallites become weekly textured leading to wide distribution of grain sizes. Thus 

during the subsequent growth process, individual crystallite size and orientation 

determines the intensity of activity among nearby grains. The competitive grain growth 

process during zone T evolution has been explained by Gilmer et al [90]. As a 

consequence of this growth, continuous change is morphology, texture and surface 

topography and film properties are expected to occur as a function of film thickness.

A systematic study further revealed the SZM at higher temperatures i.e. higher 

Ts/Tm bulk diffusion processes were reported to be the most significant, where the GB 

migration occurs not only during coalescence, but throughout the film densification 

process. During the coalescence stage, the growth orientation is pronounced with 

decrease in the GB area as well as minimization of interface and surface energy [91]. 

This growth was continued at the expense of smaller or unfavourably oriented grains. 

After this stage, there is also a possibility of abnormal grain growth, where the grain 

size distribution is transformed in to monomodal, through bimodal, to a new 

monomodal distribution with larger in-plane grain size. During this stage, enhancement
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in the degree of texture takes place, with homogeneous film structure along the growth 

direction featuring columnar crystals with flat surfaces decorated by GB grooves.

B. SZM incorporating the effects of Ion bombardment

An additional contribution to the film growth model was introduced by Messier 

et.al. [92], where replaced the pressure axis with bias voltage (Vs) as shown in figure 

10b. In this particular case, the zone T was observed to be widened relative to zone 1 

because of increase in the ion bombardment (due to bias voltage) which promotes 

adatom motion and therefore has the same effect as raising substrate temperature. In the 

mean time, the columnar grain diameter near the film surface typically observed as 

increasing to several hundred nanometres from 1 to 3 nm from the substrate interface. 

During ion bombardment, rapid transfer of kinetic energy of the bombarding ions to a 

very small area of atomic dimensions and subsequent rapid cooling at the rate of about 

1014 K/s expected to takes place, which replaces the conventional heating [93]. Due to 

the energetic bombardment of ions (approximately with energy Ei ~ -Vs) [94], the 

surface and bulk diffusion process are believed to influence the film structure and 

evolution during the film deposition. For example, it has been shown earlier in case of 

TiN film deposition at 300 °C, the film microstructure changed from a columnar 

structure with open column boundaries at -Vs < 80 eV, to a void-free columnar structure 

at -Vs < 1 2 0  eV, and finally to a fully dense structure at -Vs < 1 60  eV. This was 

attributed to the high mobility of adatoms on the condensing surface caused due to high 

energy bombardment. Additional impact of energetic bombardment can also be seen in 

modifying the substrate surface during cleaning and etching, momentum transfer 

processes in the surface region, such as sputtering, desorption, recoil implantation, 

stress development on the growing film, defect formation, addition of het to the surface 

region and formation of secondary electrons which changes the plasma chemistry [95]. 

Despite controlling the thin film microstructure, the proper application of bias voltage 

have shown increased nucleation rates and film density, decrease of average grain size, 

prohibited columnar growth associated with high surface roughness and decreased 

defect density [8 8 ].
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Figure 14 Schematic representation of SZM for sputtered film, showing the 

superposition of shadowing, surface-diffusion, and bulk-diffusion processes (b) 

structural evolution in case of RF sputtered film w.r.to ion bombardment and thermal 

induced mobility [Ref: 89, 92].

C. Effect of ion-to-neutral ratio (Ji/Jn)

The average energy carried by ions per condensing atom is determined by the 

ion-to-neutral ratio. Several experiments in the past have shown advantages of ion

3 7



assisted film growth where high ion-to-neutral ratio has been achieved and subsequently 

high quality films were produced. The effect of Ar+ ion bombardment on the growing 

film morphology has also been studied by theoretical modelling and simulations [96]. 

Figure 15 shows the computer simulation showing the influence of ion bombardment. 

The model shows the porous microstructure in the absence of ion bombardment, figure 

13a. Whereas in figure 13b and 13c, we can clearly see the denser structure resulted due 

to high adatom mobility and surface diffusion caused by increased ion bombardment. 

Experimental evidence can be seen in [97, 98], where higher ion-to-neutral ratio at the 

substrate has been shown to produce refined grains and denser microstructure. The 

closed-field unbalanced magnetron sputtering (CFUBMS) has been proved to produce 

higher number of ions compared to neutrals [99]. Kelly and Amel [99] have proposed 

new structure zone model relating to CFUBMS technique. In this model, major 

parameters such as homologous temperature (Ts/Tm) and the substrate bias voltage were 

taken into consideration to describe the coating microstructure. Figure 16 shows the 

SZM for coating deposited by CFUBMS which compares with zonal boundaries for 

SZM proposed for other sputtering systems in earlier papers by J. Thornton [89] and 

Messier [99]. According to this model, at constant bias voltage, by varying Ji/Jn ratio at 

particular homologous substrate temperature, one can achieve zone 2 and zone 3, as 

explained by Messier.
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Figure 15 The microstructure obtained by computer simulation of Ar ion bombardment, 

(a) without ion bombardment (b) with Ar bombardment of 10 eV energy and Ji/Jv = 0.16 

(c) Ar ion bombardment with 75 eV energy and Ji/Jv = 0.16 [Ref: 96].
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Figure 16 Positions of zonal boundaries of SZM, (in terms of homologous temperature 

T/Tm) for CFUBM in comparison to other sputtering system [99].

2.3 Nanostructured coatings

Increasing overwhelming demand in multidisciplinary hi-tech applications have 

increased the production and widespread utilization of multifunctional nanostructured 

coatings in various industries, due to their outstanding mechanical (adhesion, super 

hardness and super toughness), chemical (erosion, corrosion etc), physical and 

tribological (friction and wear) properties. Moreover, recently, ceramic-based 

nanostructured materials have shown their importance in the application of 

microelectronics and transportation [100, 101]. Most of the properties are unique in case 

of nanostructured coatings when compared to conventional coatings with the coarse­

grained polycrystalline and microscale composite structures. The outstanding properties 

of these nanostructured coatings can be attributed to the interface [102-104] and 

nanoscale effects associated with these nanostructures, with high interfacial volume 

fraction and lower crystallite size d which will not exceed 100 nm [105]. The 

conventional lattice dislocation slip is hampered by these interface and nanoscale effect
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in nanostructured coatings. Meanwhile the interfaces of nanostructured coatings play a 

very important role in deformation mechanism which differs from those conventional 

coatings. These are the factors which enhances the properties of nanostructured coatings 

in terms of its hardness (H), Young’s modulus (E), plastic deformation, elastic recovery, 

toughness, resistance to cracking, thermal stability, oxidation resistance, etc. The 

manufacturing of these nanostructured coatings (metallic, ceramic, or polymeric based) 

and their superior performance was demonstrated in wide range of applications [103, 

100, 101, 106, 107].

Basically, innovative designs in nanostructured coatings can be classified in 

three categories. These classifications depend upon their different nano-structured 

phases and constituting material composition inside the individual phase; these are (A) 

self organized nano structures (B) nanocrystalline nanocomposite structures.

(A) Self organised nano-structures

Self organised structures are self arranged structures of atoms during the 

evolution of thin films. The process is natural way of arranging atoms that crystallizes 

from the nucleation centres. Evolution of self organised structure is basically controlled 

by kinetics of condensation and inter-diffusion of depositing atoms on the substrate 

[91]. The most basic concern of these processes is to control the grain size, morphology 

and growth orientation of the atoms that crystallizes on the substrate. Final structure 

will evolve in multicomponent, multiphase thin films or films with desired structures of 

multilayer or nanocomposite phase structure. Compositionally modulated multilayered 

structure is usually grown by PVD methods, where inter-diffusion and roughening is 

hindered due to kinetic constraint. This can be overcome by controlling the ionised flux 

to be deposited on the substrate [108]. Research articles have revealed that the 

sequential magnetrons have been successfully utilized to achieve compositionally 

modified layered microstructure with abrupt interfaces. Also, rotating substrate holders 

between the fixed sources have been utilised to achieve multilayered and graded 

composite nanostructures [103, 108, 109].

(B) Nanocrystalline nanocomposite coating structure

Nanocrystalline nanocomposite coating structures are recent breakthrough in the

field of nanostructured coatings. These structures are designed in such a way that the 

overall performance of the films differs very much from that of conventional coatings.
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The coating material structure composed of mixed phase with two or more different 

nanocrystalline grains of size d < 1 0 0  nm is termed as “nanocrystalline nanocomposite 

coatings”. Decreasing the grain size (d) has advantages in terms of decreasing 

dislocation activity. This particular process is known to replace by other intergranular 

deformation processes such as grain boundary enhancement, grain boundary sliding and 

electronic bonding between atoms in neighbouring grains and atoms in boundary 

regions [110]. Hence, besides increase in surface-to-volume (S/V) ratio of grains, the 

ratio of number of atoms in the boundary region to surrounding the grain (Nb/Ng) also 

expected to increase with decreasing the grain size [1 1 0 ]; and this factor plays a major 

role in determining physical and functional properties of these coatings. Depending 

upon the grain size (d) and distance between the grains (W) these structures are 

classified in to two different types: (i) nanocomposites containing nanocrystalline grains 

embedded in amorphous matrix, e.g. TiN embedded in DLC or a-SisN4. (ii) 

nanocomposites containing nanograins surrounded by tissue phase, e.g. Si-DLC, TiC- 

Cu etc. Further, these nanocomposite structures have been differentiated with respect to 

its hardness H, and dimensions. Details of these can be seen in [110].

The fundamental physical quantity, i.e. energy delivered during the formation of thin 

films, controls its structure, elemental and phase composition which plays a crucial role 

in its physical properties [111-113]. J. Musil proposed that the total energy delivered to 

the film during the growth is the summation of other energies of deposition parameters, 

such as, energy delivered by substrate heating (Es), kinetic enery of the bombarding ions 

(Ej) and fast neutrals (Ef), energy released during the exothermic chemical reaction 

(ECh), energy delivered by hot magnetrons (Emt), the final one is the energy due to heat 

radiation (Erad), this can be given as:

Et = ET(Ts,td ) + EV(US, is, aD,PT, td) + Fcft( td) + E m t ( W d > t d >  D s - t )  "b E r a d O ' d t )  ~~ 

-  (14)

Where,

t d is the duration of film deposition, PT is the total pressure, Wd is the 

magnetron voltage which is a function of magnetron voltage (Ud) and current 

(Id), S is the total area of the magnetron target, ds.t is the substrate to target 

distance, ao is the film deposition rate,
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The complex interplay between all the above terms plays a very important role in the 

overall film formation process. For example the first two terms contribute significantly 

to the films growth, whereas the energy delivered by exothermic chemical reaction 

(third term) play a role in the growth of advanced materials, and final two terms are 

very important for the growth of films on sensitive substrates [110]. Further proposed 

theory by J. Musil et. al., about the conditions at which important structural transitions 

occurring between individual phases of nanocomposites such as crystalline to 

amorphous, crystalline phase of one material to another crystalline phase and transition 

between different crystallographic orientation of same material takes place; can be seen 

in [114, 115]. Figure 17 [110] shows the schematic diagram illustrating the structural 

evolution of two-phase A-B-N nanocomposite film. This figure shed light on the 

transition from preferred crystallographic columnar structure of AN grains separated by 

a-BN phase (oriented perpendicularly to substrate) in Ai.xBxN film to nanocomposite 

structure in which every AN nanograins is surrounded by a thin tissue phase of a-BN. 

This transition is expected when the atomic content of B is increased gradually to 

certain amount, For example in figure it is given as B1 to B2. Figure 17a and 17b shows 

the schematic of these two structures. Further increase in the quantity of B in the Ai_ 

XBXN film (> B2) leads to a nanocomposite structure where nanograins are embedded in 

a a-BN matrix which is X-ray amorphous structure (Figure 17c). If the content of B 

increases further, the film structure is expected to change completely with the formation 

of pure a-BN phase without any AN nanograins. These type of nanostructured transition 

was reported in case of magnetron sputtered films of Zr(Ni)Nx, Tii_xAlxN, Al(Si)N, nc- 

Ti(C, Nx<1)/a-C, etc [116-119].
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2.4 Nanostructured and composite coatings- for advanced 

Tribological applications

Enhanced functional properties shown by advanced nanostructured and 

composite coatings have promised to demonstrate their greater performance, longer 

durability and higher efficiency in the field of advanced tribological applications [1 2 0 - 

123]. Besides being shown their importance in tribological applications, ceramic based 

nanostructured coatings have also promised their necessity in the field of 

microelectronics, automotive, textile, biomedical and machining applications in 

aerospace industries [100, 109, 124]. The design and development of these innovative 

coatings are aimed to meet the most severe applications of advanced tribosysterns [109, 

124-126].
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For example earlier research work have clearly revealed the multilayer and 

nanocomposite coating designs which can initiate self lubrication during sliding by 

providing lower friction force against counterpart and self-adapting properties for 

changing environmental conditions [128, 129]. Amongst all well developed tribological 

coatings, the most popular nanostructured and nanocomposite coatings are carbon based 

films, such as nanocrystalline diamond [130], Diamond like carbon (DLC) [131], 

carbide derived carbon, nitride, carbides [123] and carbon nitride [132].

2.4.1 Nanostructured carbon films

Carbon has been considered to be a very precious ingredient in most of the 

nanomaterial because of its well known property of being very hard (diamond, 

transition metal carbides, etc) [133], high lubricity or low friction [134, 135], good wear 

resistance, chemical inertness (Graphite, DLC, Me-DLC, Me-graphite) [128, 136-138].

The physical properties of carbon based films strictly depend upon the structure 

of carbon bonding with another carbon (graphite or DLC) or metal (Me-DLC). In case 

of DLC material, it is the ratio of sp2 (graphitic) vs. sp3 (diamond like) content which 

decides its property [139]. Usually, diamond like carbons (DLC) with amorphous nature
O ' )  1

contains mixture of hydrogen and sp , sp and sp sites [139]. The range of graphitic 

ordering in DLC (sp site) can extend from microcrystalline to glassy carbon [140]. 

DLC with more hydrogen and less sp3 content is called hydrogenated DLC (C: H) and if 

it contains more sp content, then it is called tetragonal DLC (ta:DLC) [140]. J. 

Robertson [139] has showed content of DLC in ternary phase diagram, Figure 18. In 

summary, the property of DLC depends upon the carbon-carbon sp configuration and 

its fraction inside the film.
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Figure 18 The diagram of sp3, sp2 and H content in DLC films [139, 140].

Another category of carbon based coating is pure graphite. Graphite is a shiny 

and soft form of crystalline carbon, normally exist in layered-lattice structure [141], of 

either hexagonal (thermodynamically stable) or rhombohedral (thermodynamically 

unstable) geometry. The inter-atomic layer distance in hexagonal structure is very large 

(~ 3.34 A0) with high c/ao ratio [142], which allows graphite to get cleaved very easily 

by some external force [141]. Figure 19 shows the graphite crystal structure. Besides 

acting as a solid lubricant, graphite is also an excellent corrosion resistant material (e.g. 

composites of graphite/Cu, etc), good electrical and thermal conductor with high 

radiation capacity, very inert to chemical species except for group VI of periodic table 

[143] and good mechanical properties [144].
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Figure 19 showing the hexagonal layered lattice structure of graphite [Ref: 144].

Recently, most of the research interest is concentrated on the hybrid structures of 

carbon materials such as Me-DLC and Me-Graphite. Me-DLC possesses nanocomposite 

multilayer structure with nanocrystalline metal grains surrounded by DLC. This 

structure favoured by both solid lubricant graphite structure as well as hard diamond 

crystal structure; whereas Me-Graphite exhibits only graphitic nature with properties of 

all the three DLC, Me-DLC and pure graphite. Examples for Me-DLC are Ti/DLC, 

TiC/DLC, TiAlCN/VCN, WC/DLC etc [145-147] and for Me-Graphite structure can be 

seen in C/Cr [123].

The self-adapting nature of carbon based films to change their structural 

properties such as graphitic to diamond like and amorphous to crystalline [137], further 

increased their interest in advanced tribological applications both at ambient room and 

elevated temperature (upto ~ 250 °C) tribological applications [148]. Nowadays we can 

see the utilisation of carbon based films in hi-tech tribology applications of cutting 

tools, automotive components, precision parts, bearings [149,150], etc. For example 

DLC coatings are well known for their tribological characteristics, such as high 

hardness (5- 70 GPa), good wear resistance (10~15 n r’N 'W )  and low friction (<0.1) 

[151]. In the recent days low friction carbon based films have also shown their promise 

in micromechanical (MEMS) systems [152], electrical contacts, biomedical implants 

and mechanical seals [143]. However, the property of carbon films significantly 

depends upon the deposition conditions and as resulted film structure [151]. Although
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we have seen the potential industrial applications of these DLC films to be very 

impressive, the major drawback has been seen with their high internal stress and 

adhesion limits its application in various tribological applications. Higher the thickness, 

more compressive stress it develops and wear rate is faster [153].

2.4.2 Advanced deposition systems for nanostructured and carbon based films

Over the last two decades the research and development of advanced deposition 

technology with Physical and chemical vapour deposition techniques (PVD and CVD) 

are really been revolutionised. In order to achieve desired complex microstructural 

architecture for specified multi functional application, it is very necessary to use 

suitable deposition technique. The increased versatility of the deposition techniques 

such as, sputtering, ion plating, cathodic-arc PVD, pulsed laser deposition (PLD), ion- 

beam assisted deposition (IBAD), plasma enhanced CVD (PECVD), plasma enhanced 

PVD (PAPVD) have increased the production capability of novel coatings at large scale 

industrial sectors. Many research articles and textbooks which reveal these deposition 

techniques and their adaptability in producing nanostructured coatings can be seen in 

[109, 154-159]. Most of the deposition technologies utilised for the deposition of 

nanostructured and composite coatings have been referred to as “hybrid deposition 

processes” [160-162]. In contrast to conventional deposition systems, these hybrid 

deposition systems are not greatly changed with respect to a physical shape or 

architecture but involve more than one deposition techniques. These additional 

provisions implemented in the deposition systems have successfully produced complex 

microstructures with the aid of extra process control parameters required during the 

growth of nanostructured and composite films [147-FP162]. Moreover, the usage of two 

or more stages of deposition has been reduced to a single process to produce 

functionally graded coatings. As an example, in the case of Ti, W, Cr based carbon 

multilayer and nanocomposite coatings were deposited by single process, which are 

described seen in [147, 162, 163].

Most of the engineering materials with protective coating require chemical, 

structural and mechanical integrity with the substrate, which is very difficult to achieve 

with CVD deposition systems [164]. In this context, PAPVD deposition processes are 

really emerging at the behest of its control over the process parameters such as target 

current density. By applying high target current densities on the sputtering targets, high 

plasma density near the substrate with greater ionisation of depositing atoms can be
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achieved. This alters predominantly the growth dynamics of the film and its functional 

property. This particular system has enabled the deposition of nitride and carbon based 

coating on all substrates with complex geometry at low temperature and successfully 

proved to result in highly adherent, smooth, dense with chemically stoichiometric 

microstructure. For example cathodic arc PVD, Arc-bond sputtering, closed field 

unbalanced magnetron sputtering (CFUBM), and high power impulse magnetron 

sputtering system (HIPIMS) [109, 162, 165]. Tribological applications in the real world 

harsh environments necessitate the coatings to protect the substrate from peel off during 

the operation conditions. Hence, adhesion of the coating determines the endurance life 

and load bearing capacity of the component used in such operations. Above mentioned 

advanced deposition technologies such as Arc PVD and HIPIMS known to provide 

atomically clear interface of the coating-substrate interface thus by providing high level 

of interdiffusion and intermixing of coating atoms with substrate atoms there by 

creating strong bond at the interface [166, 167]. Recently, A.P. Ehiasarian and his 

research group have successfully implemented the HIPIMS system on industrial scale to 

deposit good quality nitrides, carbides thin films dedicated to the above mentioned wide 

range of applications [169].

In summary, plasma deposition techniques such as PAPVD, PECVD, Ion beam 

deposition, Pulsed laser deposition (PLD), etc are commercially utilised in the industries 

for the deposition of coatings ranging from magnetic hard disc, micro electronics, 

tribological and decorative coatings [151, 160-165, 170, 171]. These techniques have 

also been used to deposit carbon based films (DLC, Me-DLC, Me-Graphite, B-C-N, Ti- 

Si-C-N, TiAlCN/VCN etc). However, the versatility of PAPVD over PECVD technique 

is increased recently in many industries. PAPVD based planar magnetron sputtering 

techniques such as Arc-PVD, HIPIMS provide following advantages [160-162, 167, 

147]:

(i) High ionisation efficiency with energetic bombardment ensures the film- 

substrate adhesion, denser morphology and near stoichiometric chemical integrity.

(ii) Energetic particle bombardment increases the adatom mobility, surface and 

bulk diffusivity which can influence the nucleation, growth and texture of the coating.

(iii) Multistage, multi rotational substrate holding capacity and provision was 

reported to increase the coating uniformity on complex geometry.
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(iv) Low deposition temperatures (~ 100 °C -  450 °C) compared to PECVD (~ 

600 °C).

(V) During the deposition of carbon based films, these techniques have enabled 

the deposition of carbon during the concurrent ion bombardment.

The following paragraphs briefly explain the deposition techniques used to deposit Me- 

Graphite (C/Cr) and TiAlCN/VCN coating at industrial scale in Sheffield Hallam 

University.

2.4.3 Arc-Bond Sputtering (ABS)

Arc-Bond sputtering is a industrial implemented deposition system comprising 

four target PVD coater HTC-1000, manufactured by Hauzer techno coating Europe 

[172]. The cathodes furnished in this particular system were enabled to operate in both 

the steered cathodic arc-evaporation and unbalanced magnetron sputtering techniques 

[172] for surface pretreatement (etching) and coating deposition, respectively. Here, one 

of the cathodes was operated in steered cathodic arc mode, for the pretreatment of 

surface prior to the deposition. Both the surface pretreatment and deposition steps in 

this particular system were carried out in Ar plasma. In this particular step the highly 

ionised metal plasma in glow discharge mode was generated and subsequently 

implanted inside the surface to enhance the adhesion of the coating to the substrate 

[173, 174]. According to the reports, metal ions generated for surface pretreatment step 

in this steered cathodic arc discharge were Nb+, Nb+2, Nb+3, Cr+, Ti+ [173]. During this 

stage the substrates were biased negatively up to -1200 V. The samples were mounted 

on three-fold rotational substrate holding table, intention of which was to improve the 

coating thickness and uniformity [172]. The ionisation studies during the steered arc and 

magnetron process revealed that the ionisation capacity of the former when compared to 

the latter was calculated to about three factors more [175]. Examples of few popular 

coatings dedicated for tribological purpose deposited by this particular technique are 

TiAlN/TiNbN (Nb+ ion etching) [176], CrN/NbN (with Cr+ and Nb+ ion etching) [109], 

TiAlN/ZrN (Ti+ ion etching), C/Cr (Cr+ etching) [162]. Furthermore detailed 

explanation of Arc-bond sputtering and the properties of tribological coatings deposited 

by this technique can be seen in [177].
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2.4.4 High power impulse magnetron sputtering (HIPIMS)/Unbalance

magnetron sputtering (UBM)

Steered cathodic arc processes were reported to generate charge carrier density 

up to 1018 cm' 3 producing highly ionised flux [173]. However, the formation of droplets 

during the etching and coating deposition [178] step of this particular process produces 

very poor quality film [166]. Thus, recently the advanced PVPVD technique, HIPIMS 

was sought to be appropriate for adhesion enhancement. When compared to ABS 

system, the internal architecture of the HIPIMS/UBM deposition system was not greatly 

changed. But the power sources for two cathodes were replaced with HIPIMS power 

supply; whereas other two cathodes were operated in UBM mode. In 2004, HIPIMS 

was enabled to operate at industrial scale using large rectangular cathodes (~ 440 cm ). 

Furthermore detailed explanation of operational control parameters of HIPIMS system 

can be seen [170]. Nowadays most of the research groups involved in the development 

of HIPIMS research are utilising HIPIMS for adhesion enhancement and coating 

deposition process because of its capability to produce highly ionised fraction of metal 

ions. This has been successfully proved to produce high quality films with enhanced 

desired physical properties in real world applications [170].

Recently, P.Eh.Hovespian et al. developed TiAlCN/VCN multilayer coating as a 

new coating for wear application, especially at elevated temperature [179]. This 

particular coating was deposited by mixed HIPIMS/UBM technique, where cathodes 

and power supplies were installed in an industrial size Hauzer techno. Coating machine 

HTC 1000/4 (chamber volume 1 m3). Here, HIPIMS was utilized for surface 

pretreatment by V++Ar+ ion glow discharge plasma [180], and for TiAlCN/VCN 

coating was deposited by operating all the targets in UBM mode. In 2009, this 

nanoscale multilayer TiAlCN/VCN coating, developed by P.Eh.Hovsepian, was granted 

by UK patent [181].
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CHAPTER 3

Experimental Methodology

In this chapter the reader will find the details on the samples used for the 

deposition of TiAlCN/VCN coating and explanation on deposition procedures and 

parameters of reactive UBM and HIPIMS-UBM and pure UBM. Subsequently, the 

description of characterising methods used to understand the functional properties of 

nanoscale TiAlCN/VCN coatings at room and elevated temperature conditions is also 

been discussed.

3.1 Substrate material, specimen preparation and deposition method

3.1.1 Substrate material and specimen preparation techniques followed prior to 
nanoscale TiAlCN/VCN deposition

Since the properties of plasma enhanced PVD (PAPVD) deposited films 

depends strongly on the substrate surface conditions, the type of deposition process and 

system geometry. It is very important to discuss these details before revealing the 

results of this particular work. In order to achieve desired properties on the substrate 

surface, it is very essential to carry out two types of cleaning process. One is initial 

cleaning of the substrate surface to remove oils, oxides, hydrocarbons etc. Second 

cleaning process is atomic cleaning, which will be carried out prior to the deposition. It 

is also called “Etching”. Both steps are equally important since both will decide finally 

the film adhesion to the substrate surface and the performance of the coated material as 

a whole.

In this work we have used as a substrate M2 high speed steel (HSS) with 

chemical composition of 0.68% of Carbon, 4% of Cr, 14% of W, 0.25% of Vanadium 

as substrate. This sample is coated and used to investigate the mechanical and 

tribological properties in hard experimental conditions. The 316 stainless steel (SS) with 

composition (0.08% of C, 16-18% of Cr, 10-14% of Ni, 2.0% of Manganese (Mn), 1% 

of Si was used for XRD measurements in order to find out the phase structure of the as- 

deposited coatings. For microstructural characterisation Si wafers and stainless steel 

coups were used. Table 3.1 informs the dimensions of substrate materials used for 

various characterisations. All samples were mirror polished using 1 pm diamond paste. 

Prior to the coating deposition the samples were cleaned in an automated cleaning line
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furnace. Table 3.2 shows the sequence of cleaning steps carried out after polishing the 

surfaces.

Test Dimensions

Rockwell C indentation, scratch, pin-on-

disc, nanohardness, Raman, SEM of worn 30 mm x 6 mm HSS coupon (1)

surface

25 x 25 x 0.8 mm3 SS square plate, (2)

SEM, TEM 20 X 10 mm Si wafer, (3)

Thermogravimetric (TG), XRD of 15 x 50 x 0.8 mm3 SS (1 x 1.5 mm hole)

oxidised surface and Raman (3)

XRD, 30 mm x 6  mm SS coupon (4)

25 mm diameter, 25 mm radius two flute
High speed machining, Raman of tool

edge
high speed machining end mills, made

from S290 HSS material (5)

Table 3.1 Substrate materials and their dimensions used for various tests and analytical 
methods.

Step Ultra sonic cleaning 
& solution used Temperature, °C Time, s

1
De-Ionised (DI) 

water + 60 2 0

2 DI water 30 5
3 DI water+ 60 2 0

4 DI water 30 5
5 DI water 30 2 0

6 Vacuum drying 1 0 0 40

Table 3.2 Substrate cleaning procedure prior to coating deposition
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3.2 Deposition Process and system geometry

3.2.1 Reactive pure UBM and HIPIMS-UBM technology

TiAlCN/VCN nanoscale multilayer coatings were deposited in an industrial sized 

physical vapour deposition coating machine (HTC 1000-4 ABS manufactured by 

Hauzer Techno Coating, The Netherlands) enabled with HIPIMS technology at 

Sheffield Hallam University in UK (Figure 20). This industrially developed deposition 

process has been known as economical process, because of the easy installation of target 

and substrate provision, relatively increased deposition rate in reactive deposition mode, 

when compared to other deposition systems due to control system for reactive gas 

[177]. The coating machine with the chamber volume of 1 m3 comprises four 

rectangular cathodes furnished with 2-TiAl (50:50 at% pure) and 2-V (99.8% pure) 

targets as shown in the Figure 21. Two opposing magnetrons, furnished with TiAl and 

V targets respectively were operated in High Power Impulse Magnetron Sputtering 

(HIPIMS) mode whereas the other two magnetrons were operated in Unbalanced 

Magnetron Sputtering (UBM) mode. The distance between opposing target was 1 m.

In the first process, HIPIMS was used in the etching step whereas the coating was 

deposited by UBM (HIPIMS/UBM, etching/deposition). In the second process, HIPIMS 

was used for etching as well as in the coating deposition step. As only two magnetrons 

were connected to HIPIMS power supplies, the deposition was carried out in a mixed 

(HIPIMS-UBM) mode. We refer second process as HIPIMS/(HIPIMS-UBM). 

Utilisation of mixed deposition mode, using simultaneously HIPIMS and standard UBM 

sources allows significant compensation for the lower deposition rates available from 

pure HIPIMS sources without losing the effects of the ion assisted coating growth. In 

the final process, two opposing magnetrons targets, were operated in pure HIPIMS 

mode where as the other two magnetrons were shielded. A schematic cross section of 

the system in this particular process is depicted in the Figure 22. The substrates were 

mounted on a 3-fold rotatable planetary tumable substrate holder, which provides 

homogeneity in coating in the growth direction. Figure 23 shows the sequence of steps 

that usually carried during all the deposition process.
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Figure 20 HTC1000-4 ABS manufactured by Hauzer Techno Coating, The Netherlands
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Figure 21 Schematic of HTC 1000-4 PVD coater and internal cross section of the four 
cathodes and three-fold substrate rotation table used for UBM and HIPIMS-UBM 
process.
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Figure 22 Schematic cross-sections of the four cathodes of the HTC 1000-4 PVD 

coating system used for pure HIPIMS process.

TiAIN base layer

V+ ion etching

Target Cleaning

Pumping & 
Heating (450°C)

TiAlCN/VCN
coating

Figure 23 The sequence of steps carried out during the deposition of TiAlCN/VCN in 

all the three cases of deposition.
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The initial pumping down process is essential to minimize the contamination 

level during the deposition. The base pressure of about 5 x 10' 5 mbar will be reached 

before starting the next step. This pressure was attained in two stages; (i) Rough
<5 O

pumping via 250 m /h roots pump and 500 m /h rotary vane pumps to a pressure of 

8xl0 ' 2 mbar, (ii) Fine pumping via two turbo molecular pumps with a total pumping 

speed of 4400 1/s to the lower pressure of 5 x 10' 5 mbar. Hot water flows around the 

chamber walls were set in order to prevent condensation of moisture on the chamber 

walls when the machine is vented. Once sufficient base pressure suitable for the 

deposition is achieved, the heating step will be started which will heat the substrates at 

temperature equal to deposition temperature. Also, because of a heating step, the 

moisture desorption process from the chamber wall will be enhanced. The moment the 

desired temperature is reached, the target cleaning step will be initiated. The purpose of 

target cleaning is to remove the impurities left over on the target surface. In this 

particular step the shutters will cover the target surface in order to ensure that the 

substrate surface will not be deposited with those impurities.

Subsequently after this stage, three major steps of metal ion etching, base layer 

deposition and nanoscale TiAlCN/VCN deposition are being carried out. In the first 

step, the substrate surface was bombarded with highly ionised V+ + Ar+ plasma 

generated from a HIPIMS discharge sustained on the V target in Ar atmosphere. This 

resulted in the formation of clean coating-substrate interface [167] and tailoring to 

strong adhesion (Lc > 50 N) of the coating. To maintain constant voltage during the ion 

bombardment a HIPIMS dedicated power supply manufactured by Huttinger Electronic 

Sp. Z o.o. was used [168]. In the second step, a TiAIN base layer was deposited, which 

further enhances coating adhesion. The coating deposition was carried out in mixed 

Ar+N2+CH4 reactive atmosphere at 450°C. Throughout the process, the substrates were 

subjected to three- fold rotation. The three fold rotation represented as xi, T2 and 13 in the 

figure 22. The bias voltage during the coating deposition step was maintained at Ub= - 

75 V. Figure 3.5 highlights the deposition parameters set during each of the sequence of 

the deposition of nanoscale TiAlCN/VCN coating by UBM, HIPIMS-UBM and pure 

HIPIMS technique.
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Pumping and heating

P < 7.9 x 10 mbar

T = 450 °C

Rs = 45 %

Metal ion etching (HIPIMS discharge of V++Ar+)

T = 450 °C, Qat= 100 seem, P = 1.1 x 10'3; Rs=45 %

t = 40 min; C3 = 4 kW; Vb = - 1000 V; It = 1.5 kA

t = 180 min; C 1 =C2=C3=C4=8 kW; P = 3.48 x 10'3; Rs=35 %;

Vb = -75 V; Ar = 181-194; N 2 = 156-158; CH4=100

TiAlCN/VCN coating deposition

(HIPIMS or UBM mode of target w.r.to deposition technique)

t = 40 min; C1=C3=8 kW; P = 3.48 x 10'"; Rs=35 %;

Vb = -75 V; Ar = 181-194; N2 = 156-158

TiAIN base layer

(2 opposing targets were in HIPIMS & UBM mode respectively) 

T = 450 °C , QAr=200 seem, P = 1.99 x 10'3 ; Rs=45 %

Step (1): t = 3 min, C1=C2=C3=C4= 1 kW (power);

Step (2): t = 5 min, C1=C2=C3=C4= 3 kW (power);

Target cleaning

t = duration, Qa,- = Ar flow rate, QN2 = Nitrogen flow rate, Qch4= Methane flow rate,
P = gas pressure, C1=C3= TiAl target, C2=C4=V target, Rs = rotation speed, Vb = Bias voltage 
on substrate.
Figure 24 Deposition parameters used during the deposition of TiAlCN/VCN coating in

all three techniques.
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3.3 Coating characterising techniques

3.3.1 Adhesion test

The “Adhesion test “is the most fundamental characterization technique, which 

determines the mechanical strength joining the deposited coating with the substrate. A 

“scratch test” was used to evaluate the adhesion of the coatings with the substrate. A 

CSM REVETEST scratch tester was used to find out the adhesion of the coating. 

Initially a maximum normal load of few mili Newton was fixed and a Rockwell C 

diamond indenter with the diameter 0.2 mm was sliding against the coating. During 

sliding the load was gradually increased from minimum to a load of maximum set 

value. The initial coating fracture was determined by the acoustic emission sensor 

coupled with the scratch tester. The critical load “Lc” at which the coating spall out 

from the substrate was observed by optical microscope connected to the scratch tester. 

Figure 3.6 (a) & (b) shows the CSM REVETEST scratch tester and schematic of scratch 

pattern.

normal load
stylus

sc rati

direction of sample

Figure 25 CSM scratch test analyser (a), schematic of scratch test (b), [Ref: 182]
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3.3.2 Rockwell C (HRc) Indentation method

The hardness of as-deposited coating was determined by conventional Rockwell 

hardness test method. A conical shaped diamond indenter with minor load of 10 kgf was 

applied initially to the coating and then slowly the force was increased to 140 kgf to 

increase the penetration depth. Figure 26a shows the schematic of Rockwell C 

indentation. After releasing the indenter, the impression from the indentation was 

observed with optical microscope and was categorised on the basis of six grades of 

indentations outlined by Verein Diutscher Ingenieure (VDI) criteria as shown in the 

Figure 26b. In this figure, each circle like image is the depth of impression created by 

the indentation and hair like structures surrounding this impression typify the 

microcrack and subsequent spallation of the coating from the substrate. Higher the 

amount of crack and spallation, more poor the coating quality is. According to this 

criteria grading between HF1- HF4 (HF- adhesion strength) was acceptable and HF5 -  

HF6  was considered to be poor. These gradings are given on the crack pattern and 

spallation of the coating around the indentation. This particular test was performed only 

on those coatings deposited on High speed steel substrate (HRc = 54).

1. Diamond Indenter
2. Depth to whkh the diamond indenter 

is forced under light load
3. Depth to which the diamond Indenter 

Is forced under heavy load
4. Increment in depth forms the basis for 

Rockwell C hardness measurement
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Figure 26 (a) Schematic of Rockwell C indentation and possible area of its impression 
[Ref 183] (b) Verein Diutscher Ingenieure (VDI) criteria showing 6  grades 
for Rockwell C adhesion test

3.3.3 Pin-on-disc test

A CSM pin-on-disc contact geometry room- and high temperature tribometers have 

been used to conduct measurements of the friction coefficient of the coated sample in 

dry sliding conditions. A 6  mm diameter AFO 3 balls were used as counterparts under 

constant normal load of 5 N (Figure 27). Tests were carried out at circular speed of 10 

ms’1, with wear track diameter of 7 mm at constant acquisition frequency of 1 Hz. The 

tests were conducted for 10000 laps at room temperature and for 5000 laps at three 

different elevated temperatures, (200°C, 450°C, and 650°C) in ambient atmospheric 

condition.
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The friction curves showing COF (coefficient of friction) were displayed against the 

number of laps past on the coated disc for applied normal load, in real time on a PC 

screen. These curves can be recalled for further analysis.

Figure 27 CSM pin-on-disc tribometer.

In dry sliding conditions, frictional forces acting tangentially on the stationary disc was 

reported to be combined effect of adhesion force (Fade) developed at the asperity 

contacts and a deformation force (Fdef) needed to plough the asperities of the harder 

surface through the softer [184]. Basic equation for friction coefficient can be given as:

F

Where F = tangential force ~ Fade + Fdef, W is normal load, ji = friction coefficient 

Fade Fdef*

Wear coefficient (Kc) calculation

A precise wear track depth profiling was carried out using a Veeco Dektak 150 

instrument to generate data such as area (A) of the wear track for the calculation of
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coating sliding wear coefficient. The wear rate coefficient (kc) was calculated 

using the formula;

A  * 2 ttR

F n  * / (l6)

Where "A" is the cross section area of the wear track, "R" is the radius of the entire 

wear track, "Fn" is normal load and "1" is total sliding distance covered [185].

3.3.4 Nano-hardness test

The elastic modulus (E) and nano-hardenss of the as-deposited thin coating was 

measured by CSM nano indentation tester. A hard indenter, in our case, Berkovich 

diamond is gradually pressed into the film from minimum load of few mN up to the 

preset value of max 20 mN. During the indentation, the tip is continuously pressed 

against the film surface for about two seconds at various loads in the preset load range. 

Usually the scanning covers larger area than the indent area, in order to get the clear 

image of indentation marks. In order to avoid the substrate contribution, the indentation 

depth is always assured to be below < 10% of the total coating thickness. Nanohardness 

is calculated by dividing the indentation load by the projected residual area of indents 

[186]. The typical nano indentation curve and Young’s modulus is calculated by the 

Force-displacement curve obtained by the software, and relevant equations are shown in 

figure 28.

100 0'

10-

6 0 0 -

Load,

40.0-

20. 0-

0.0 mN

0 Oum 0.6

Depth, h
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Surface profile initial surface
after load removal Indenter

Surface prof 
under load

Hardness, = — ;Ap

Reduced modulus = E* = — S
2

E can be calculated by - 7  = ^  v  ̂ Vl  ̂ (17)E E  El

Where, Fm = maximum applied load
Ht = depth from the original surface
Ap = projected contact area which is determined from the contact depth, he 
E = strain obtained from stress-strain curve 
S = contact stiffness (tangent to the unloading curve) 
v = Poisson ratio of measured material (0.3 was used in this experiment)

Figure 28 Nano-indentation curve and formulas used to calculate nanohardness and 

Young’s modulus [Ref: 185]

3.4 Plasma characterisation

3.4.1 Energy resolved mass spectrometry

The plasma analysis has been carried out in a laboratory scale ultra- high 

vacuum chamber model CMS-18 (Kurt J. Lesker) equipped with 3-inch diameter targets 

of TiAl and V operated in HIPIMS and UBM discharge mode. The discharge conditions 

such as average and peak power density and gas pressure were similar to those of the 

deposition experiments conducted in the industrial sized Hauzer HTC-1000-4 machine.
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An energy-resolved mass spectrometer PSM003 (Hiden Analytical Ltd.) was utilised to 

quantify the time-averaged ion composition in the plasma. Schematic figure 29 shows 

the plasma sampling spectrometer.

The ions from the plasma are extracted by the extraction chamber. A DC voltage 

of about -10 V and -80 V respectively, is applied on to the electrodes inside the 

extractor to attract these ions from the plasma. The negative voltage is applied usually 

to repel electrons and attract positive ions from the plasma. The ions are filtered by 

Bessel box installed in the systems. Further, filter process will continue by the 

quadruple mass analyser (QMA). Ions with specified mass-to-charge ratio would 

detected by secondary electron multiplier (SEM). These SEM detectors are maintained 

at increasing higher positive voltage at the output signal, in order to amplify the signal 

output. Hence, the selectivity of the charged species with large differences in number 

density is possible with signal to background ratio of 106 [187, 188].

The basic principle of mass analyser is explained briefly. The mass analyser 

differentiates the ions with respect to their mass-to-charge ratio. This differentiation is 

based on the principles of electro magnetism in vacuum for charged species stated by 

Lorentz law:

F = qE+qvXB (18)

and Newton second law:

z? -*■F = ma

Where, F is the force applied on the ions, E is the electric field, vXB  is vector cross 

product of ion velocity and magnetic field, m is the mass of ion, and a is the 

acceleration. When both equations are equated, the expression for the force applied on 

the ions inside the chamber can be obtained; i.e.,

- d  = E + vXB (19)
Q
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Where, — is the mass-to-charge ratio. Based on this equation for the motion of the

charged species, the ions can be identified. Charged species with equal mass-to-charge 

ratio will be influenced in similar fashion.

The fragments of energy filtered ions from the Bessel box are guided into the 

system of 4 rods of hyperbolic surface, called quadrupole mass analyser (Figure 30). A 

DC field is applied to two rods and RF field is applied to other two rods. These rods 

generate electric field through which ions are allowed to move. Only few ions of 

specific mass-to-charge ratio determined by the applied voltage are finally detected by 

the detector. This mechanism allows the identification of a particular ion by varying 

voltage.

In summary, the mass spectrum is usually measured by setting a fixed voltage 

on the Bessel box to define the ion energy and changing the voltage on the QMA, thus 

data obtained in terms of mass-to-charge ratio. The energy resolved mass spectrum 

collected in this work for V+ ion etching and TiAlCN and VCN deposition is discussed 

in next chapter.

3.4.2 Time averaged mode

The relative content of each ion during the deposition was determined by 

integrating its corresponding ion energy distribution function. The mass spectrometer 

acquires data at certain energy for specified duration. In this particular mode the 

detector was assigned to collect the data for every 300 ms which is equal to around 30 

pulses. By changing this acquisition time, it is possible to determine the ion energy 

distribution function (IEDF) for arriving charged species throughout the pulse. The 

IEDF measured in the average time of acquisition gives the information about ionic 

composition of the plasma reaching the substrate.
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Bessel Box energy filter Quadrupole mass analyzer
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energy
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: Voltage source

Figure 29 Schematic internal features of energy resolved mass spectrometer 
[Ref: 189]

Molecules
Detector

Successful k>n pjth

Q jadrupole Ion Analyzer

Electron Impact Ionizer

Figure 30 The schematic of quadrupole mass analyser showing the ions reaching the 
Detector [187].
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3.5 X-ray diffraction (XRD)

The X-ray diffraction study was carried out using a Philips PW 1710 automated 

diffractometer. The study was carried out for two purposes. Initial purpose was to 

understand the microstructure of the as-deposited TiAlCN/VCN coatings by Low angle 

XRD and Glancing angle XRD (fixed at 1° incidence angle) technique. Another purpose 

was to identify the chemical phases of as-deposited and oxidised surface of 

TiAlCN/VCN coating by 0/20 measurement in Bragg-Brentano geometry. In this 

geometry the scanning was done from 20 = 10° to 100° with a step size of 0.04°. X-ray 

radiation with CuKa with 1.5405 nm wavelength is used for all the methods.

In general the diffraction of waves are more pronounced when the wavelength of 

an incident electromagnetic wave is in the same order of magnitude as the dimension of 

the diffracting objects. Because the dimensions of the atoms are equal to that of the 

wavelength of X-rays, which are in the range of few angstroms, Xrays are widely used 

to probe the atomic structure an element. If the atoms are arranged in a periodic fashion, 

the constructive interference maximum of the diffracted waves provides the information 

about the symmetry of the atomic arrangement. Hence the Xray diffreaction peaks are 

directly related to the atomic distrances. The periodicity, also called the distance 

between the successive two atomic planes is given by dhki- Where, hkl are Miller indices 

given for corresponding lattice planes. For simple cubic structure the maximum 

intensity for diffraction can be obtained only when Brag’s equation is obeyed. This 

equation is given as [190]:

2 dhki Sin0 = nA, ; n = reflection order, X = wavelength of radiation.

Where, dhki — ~ i = = =  ? a = lattice parameter.
Jh2+k2+l2

Geometrically the Brag’s equation can be visualised by the figure 31 given below.
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A, + A2 = 2d  cos(90° — 6) = 2d  sin 6

Figure 31 Geometrical visualization of Brag’s equation [Ref: 191]

The constructive interference of the reflected waves will happen only when 2 dhki Sin0 is 

equal to integer multiple of wavelength impinging on the crystal planes.

3.5.1 Glancing angle geometry (GAXRD)

In XRD analysis of thin films, contribution from the substrate to the diffraction 

can sometimes overshadow the contributions from thin film. In such conditions 

GAXRD is useful non-destructive technique to collect the information from actual film 

with minimum contribution from the substrate. Figure 32 shows the GAXRD geometry. 

In this geometry parallel, monochromatic X-ray beam incident on a sample surface at a 

fixed angle of incidence a and diffraction profile is recorded by moving the detector 

alone.
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Detectoi

Substrate

Figure 32 Schematic of Bragg-Brentano geometry [Ref: 192]

The basic principle in this technique is that when angle of incidence is decreased 

from critical angle “a i”, the X-ray reflection occurs only below this critical angle 

because of refractive index value which is less than unity. Due to this fact the diffracted 

and scattered signals at 20 collected only from within the minimum depth available 

from the surface. In glancing angle geometry the penetration depth is defined as the 

distance, xe from the surface that the diffracting planes in the specimen contribute to the 

whole diffracted intensity by the ratio Me:

sinv sin(20-v)
— ~r~-----------r r r — — (20)

l 4 s i n y + s i n ( 2 0 - y ) ]

Where p is the linear absorption coefficient for TiAlCN/VCN and y is angle of 

incidence [190]. By using above formula, the structural information from the film can 

be probed through its thickness by varying the angle of incidence.

3.5.2 Bragg-Brentano (0/20) geometry

In this case, the X-ray beam incident at an angle 0 on the film surface and the 

diffracted beam intensity was detected using a counter at an angle 20 relative to the 

incident beam. The beam obeying the Bragg’s law and planes parallel to the film
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surface only contribute to the diffraction intensity. Figure 33 shows the 0/20 geometry 

of this technique.

Diffracted

Incident

T h i n  f i lm  s u r f a c e

X-ray

X-ray

0
20

Figure 33 Schematic of 0/20 geometry in Bragg’s-Brentano XRD technique.

3.6 Raman spectroscopic analysis

Raman spectroscopy is an effective, non-destructive, non-contract, thin film 

characterising technique which requires no sample preparation. Especially, when 

characterisation is carried out in confocal mode, it offers the measurement at sub­

micron special resolution. Thus, specific particle and grain regions of the as-deposited 

thin films can be analysed. Additionally, the confocal Raman spectroscopy provides 3D 

spetial resolution, allowing the analysis of discrete volume in a transparent sample also. 

This property is particularly suitable for the analysis of the multilayer thin films with 

nanolaminate structures.

Raman scattering is the phenomenon of scattering of discrete energy when 

monochromatic radiation of certain wavelength passed through a transparent and 

reflective substances. This scattered discrete energy consists frequencies above and 

below that of incident beam. When this monochromatic radiation with energy E =  hv,
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interacts with the molecules of the substance, they can undergo elastic or inelastic 

collisions. If the scattered energy equal to that of incident energy of the radiation, then it 

is referred to as elastic scattering. In this scattering, only electron cloud distortion is 

expected. For molecules it is names “Rayleigh scattering”. In the case of Raman 

spectroscopy the scattered radiation is different than that of incident beam energy, in 

which the nuclear distortion is expected. The energy change in this case may be less 

hv — AE (stokes shift) or more hv + AE (anti stokes shift) than the incident energy E. 

This is the case of inelastic scattering; also called Raman scattering. It is a very week
f\ oprocess where only 1 0  to 1 0  photons are expected to scatter, but the modem 

instruments use lasers with high power density to get higher counts. The change in 

energy (AE) is either vibrational energy or rotational energy of the molecule. Figure 

34(a) shows the basic process of energy change in single vibrational mode, when 

radiation interacts with the substance molecule. In the Raman scattering process, if 

molecules absorb energy from its present ground state (m) and if attains higher excited 

state (n) then it is called stokes line. If any transition from excited state to ground state 

occurs then it is called anti stokes lines. Usually Raman scattering is recorded only on 

the lower energy side of stokes line [193].

In this work, the Raman spectrum was measured at room temperature using 

HORIBAJOBIN YVON HR800 integrated Raman spectrometer fitted with UV (k = 325 

nm) and Green laser (k = 532 nm). Figure 34 (b) shows the picture of the HR800 

integrated Raman spectrometer. The microscope was coupled confocally to a 800 mm 

focal length spectrograph equipped with switchable two gratings (600 g/mm and 2400 

g/mm). The 2400 g/mm grating was used for collecting the spectrum with a spectral 

resolution of 2-3 cm'1. Usually, higher the groove density of the grating, higher is the 

spectral resolution. For example with 532 nm laser, a lOOx objective and 1800g/mm and 

2400 g/mm grating, the special resolution of 200-400 nm can be achieved [194]. 

Utilisation of UV laser excitation allowed analysing from very thin layer (nm in 

thickness) from the top of film. Another advantage of utilisation of UV laser is the 

increased sensitivity (as compared to that using excitation in visible range). Reports 

revealed that sensitivity of UV laser is 14 times higher than that when using 532 nm and 

633 nm wavelength laser [195]. A 50 % transmission filter was used to reduce the 

intensity of incident beam. A silicon based multichannel array detector (CCD) was 

used to collect the output signal scattered from the samples.
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Figure 34 (a) The basic scattering lines when monochromatic radiation is passed 
through a substance [193] (b) HORIBAJOBIN YVON HR800 integrated Raman 
spectrometer.

3.7 Thermo gravimetric Analysis

Thermogravimetry is a technique that measures the variation of mass of a 

sample when it is subjected to a temperature program in a controlled atmosphere. This 

variation of mass can be a loss (vapour emission) or a gain (fixing of gases). As 

materials are heated, they can lose weight onto a simple process such as drying, or due
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to chemical reactions that liberate gasses. Some materials can gain weight by reacting 

with the atmosphere in the testing environment. Since the weight loss and gain are 

disruptive processes to the sample material or batch, knowledge of the magnitude and 

temperature range of those reactions are necessary in order to design adequate thermal 

ramps and holds during those critical reaction periods.

3.7.1 Operating Principle

The standard High performance modular Thermo gravimetric Analyser TGA 

(ambient /2400 °C) from SETARAM instrumentation was used to measure oxidation 

studies of coated samples. The experiments have been carried out either in an ambient 

air or in the inert atmosphere of Argon. The coated samples of stainless steel were 

suspended on a micro-balance with very high stability and fidelity; capable to measure 

approximately about 35 g load. The system has been provided with high-performance, 

optical and electronic detection system. The balance is zeroed, and the sample is heated 

according to a predetermined thermal cycle. The balance sends the weight signal to the 

computer for storage, along with the sample temperature and the elapsed time. The 

TGA curve plots the TGA signal, converted to percent weight change on the Y-axis 

against reference material temperature on the X-axis. The schematic internal electronic 

and mechanical circuitry of the TG analyser is given in Figure 35.

The coated samples were normally heated from ambient to the maximum 

temperature of 1000°C at 1° C per minute. Slow heating rates are preferred so that the 

weight change can occur over a narrower time span and temperature range. The 

resulting curves are steeper and the onset of oxidation temperature is closer to the actual 

coating. The SETSYS has provided the ability to set various heat up rates according to 

the user’s requirements. The data acquisition and analysis software from the SETSYS 

displays the test progress on the monitor, stores the data and enables the user to perform 

analysis on the data.
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Figure 35 The internal electronic and mechanical circuitry of SETARAM TGA analyser 
[195].

3.8 Scanning electron microscope (SEM)

Scanning electron microscope is a vacuum technique in which highly focused

beam of energetic electrons are guided on to the surface of a material to generate signals

(secondary electrons or back scattered electrons) which provide information such as

surface morphology, chemical compositions, crystalline structure, etc. These signals are

collected from selected area of the surface and create 2-D image on the computer screen

which is interfaced with the spectrometer. Besides getting the images, it is also perform
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analysis of the samples under investigation. For example, the qualitative analysis 

includes identifying chemical composition (Energy dispersive X-ray analysis), crystal 

structure or orientation (Electron Back scattered diffraction). Figure 37 shows the 

schematic internal view of the SEM.

Basically, the electrons are generated from the heated filament (tungsten or 

LaB6 ) and accelerated down a column through few voltages potential (1-50 kV). During 

this process the column is normally under vacuum of about 1 x 10‘6 Torr. These 

energetic electrons interact with the atoms, i.e. inner shells electrons of the sample 

surface. This interaction is so powerful that it produces secondary electrons (helpful for 

surface morphology and topography), back scattered electrons (used for determining 

crystallinity), photons and X-rays (for chemical analysis). Figure 36 shows the 

schematic of possible signal which might emerge out when electron interacts with the 

surface atoms. Generally, SEM coupled with following necessary components which 

are depicted in figure 37 (a), and briefly explains the important parts of the SEM and its 

functions.

3.8.1 Secondary electron and back scattered electron image

Secondary electrons excited secondarily by electrons guided on the specimen. 

Usually, they are generated in a region of about 10 nm. This technique has very little 

imaging provision since the electron diffusion length has less influence on imaging. In 

contrast if the electrons are scattered back in to the sample and emitted again from the 

sample, then the contrast of the image is good. This is called back scattered imaging. 

This back scattered imaging depending upon the mean atomic number of the substance 

which constitute the specimen.
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Figure 36 Shows the possible signal which can emerge out from the sample when 
electron interacts with the specimen surface atoms [idea taken from: 196]

In this work, relevant cross-sections from as-deposited coatings were prepared for 

scanning electron microscopy using FEI NOVA-NANOSEM 200 (Figure 37). This is 

equipped with high resolution field emission SEM column with high stability Schotky 

gun with two mode (field free and immersion) final lens. Prior to the imaging, the 

chamber was evacuated to about 1 0 '6 order in order to avoid contamination during the 

imaging or analysis. The high imaging of the sample cross section was carried out with 

working distance of about 1 nm at 15 kV by using TLD or SE detector. High vacuum 

analysis (EDX) was carried out at working distance of about 3 nm at 15 kV, using TLD 

or SE detector.



Electron Source
Comprise tungsten or LaB6 filaments which are heated to produce

electrons.

Electron lens
Consists condenser (CL) and objective lenses (OL); CL controls the 
probe current and spot size, and OL helps to focus the electron on

the sample.

Sample stage Hold the sample and helps to adjust working distance (WD); WD is 
the distance between the objective lens and sample surface.

Detectors for all 
types of signals

Various types of detectors are installed depending upon type of 
signal.

Back scattered electron Solid state detectors
Secondary electrons Everhart-Thornley detector

X-ray Energy dispersive spectrometer
Display Computer monitors are interfaced to observe the test surfaces.
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Electron g u n -------

Gun alignment control -  

air lock valve 

'-C ondenser lens —
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Figure 37(a) Brief introduction to major internal parts of SEM and its function (b) Schematic 
internal view of SEM [197].
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3.9 Transmission Electron Microscopy (TEM)

Unlike scanning of surface of materials by electron, Transmission electron 

microscope (TEM) also uses energetic electrons which are allowed to pass through the 

material object in order to reveal the surface morphology, the crystallinity of the 

material, and its chemical composition. Conventionally, in TEM also, energetic 

electrons are generated by thermionic emission by heating the tungsten or LaB6  

filaments. But all modem TEM’s uses low work function LaB6  filament as their 

electron source. Additionally, LaB6  sources have low operating temperature, which 

helps to increase the brightness by reduced electron energy spread [198]. Figure 38 

explains the general purpose of the TEM in materials analysis.

EDX

TEM

SAD CBED

EELS

Imaging Analytical

EFTEM

Diffraction

Dark field 
Z contrast

Bright field 
phase contrast

SAD: S e l e c t e d  a r e a  d if f r a c t io n ;  EDX: Energy dispersive X-ray analysis 

CBED: c o n v e r g e n t  b e a m  e l e c t r o n  d if f r a c t io n ;  EELS: E le c t r o n  e n e r g y  lo s s  s p e c t r o s c o p y

EFTEM: E n e rg y  f i l t e r e d  TEM

F ig u re  3 8  B a s ic  p u r p o s e  o f  T E M  in  m a t e r i a l s  s c i e n c e  a n d  t e c h n o l o g y .

Figure 39 shows the internal optical arrangement of TEM. The electrons generated are 

guided to the columns which are positively biased to about 200 kV to 400 kV (in SEM 

10-20 kV). Then the condenser lens systems are used to focus the electron beam on the 

sample. In this way, the parallel beam spreads over the sample surface, where electrons 

are scattered by elastic or inelastic mechanism with nuclei of the atoms and electrons of 

the sample respectively.
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It is important to notice here that, the samples are inserted in mid way of the TEM 

apparatus, where as in SEM the samples are at the bottom side of the chamber. 

Apparently, the electrons passing the nuclei may gain and extra velocity and thus reduce 

their wavelength which leads to the change in their phase. At this stage, the structural 

information of the specimen will be transferred to the phase of the electrons. Only those 

electrons which are scattered by nuclei of the atoms of the surface (elastically scattered) 

will contribute to the high resolution images of the specimen, whereas those scattered 

from the electron shells of the atoms (inelastic electrons) contribute mostly to the 

background of the image. The energy filters are used to remove these inelastic electrons, 

whose energy loss spectrum contains the information about the chemical nature of the 

substance. In the next stage, the phase information of the electron is converted into 

intensity information when electrons passed through substance reaches the objective 

lens. Objective lens changes the phase by few factors and converts the electron beam in 

to image on the screen. There are many factors which pose hurdle to the high resolution 

image, when electron beam passes through the objective lens. For example chromatic 

aberration of the objective lens, electrical instabilities of the microscope, mechanical 

instability and inelastic electron loss, etc, cause defocusing of the electron beam spread 

on the screen. More detailed information about these facts can be seen in [199]. The 

objective aperture are usually block the high angle scattered electrons and provide better 

contrast to specimen image on the screen, where as selected area aperture enables the 

user to examine the periodic diffraction of electrons by ordered arrangement of atoms in 

the sample. Figure 40 shows the diffraction and imaging modes of TEM. The final 

images are seen on the fluorescence screen. The darker images on the screen represent 

the areas through which fewer electrons are transmitted, where as brighter images 

signify the area through which more electrons are transmitted. The advanced TEM 

instruments can give a resolution of about 0 .2  nm with very high magnification of 

500,000X.

In this work, the microstructure of as deposited TiAlCN/VCN coating was 

analysed by transmission electron microscopy (TEM) observation using a Philips 

EM430 instruments. This microscope was Equipped with a LaB6  electron gun, the 

EM430 TEM provides a point resolution of 0.2 nm and has a double tilt sample holder 

and low-temperature sample holders. This microscope was useful throughout the 

analysis of nanoscale TiAlCN/VCN coating, by which the atomic arrangement of as 

deposited coating and microstructure was revealed.
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3.9.1 TEM Sample preparation

The following points briefly explain the procedures for preparing electron transparent ('  ̂ 100 

nm) cross-sections samples:

1. Cutting:

a) The coated sample (coating face up) was cut to a dimension ™ 2.5 X 2.0 mm2 with 

a high speed SiC cutting wheel.

Two cut samples with the coatings facing each other (to protect the coating surface) were glued 

with wax on a glass plate.

2. Grinding and Polishing

a) The samples were ground evenly by 240,320,400, and 600 grit papers, to half the 

sample thickness on one side and then polished with 5 pm diamond paper.

b) The samples were turned over to the other side and were ground to ~ 30-60 pm 

following step (a).

c) Finally, the sample was glued with epoxy resin on a copper grid with a slot hole and 

ready for ion beam thinning to electron transparent thickness.

3. PIPS ( Precision Ion Polishing System-Ion beam milling)

A GATAN PIPS 691 system was used to thin the sample to the electron transparent 

thickness of 50-100 nm by Ar ion beam milling. The parameters used were:

a) Ion gun accelerating voltage: 5.5 KeV

b) Rotation speed : 1.5 rpm

c) Incident angles: ± 8 °

The sample was thinned until a small hole appeared on the coating region of the sample. The 

sample was then ready for investigation under TEM.

3.10 Dry high-speed milling test

The purpose of the development of nanoscale TiAlCN/VCN was to protect the 

tool edge from being damaged or getting worn out when utilised during the machining 

of sticky alloys (Ti, Al, and Ni based alloys). Dry high-speed machining performance of 

the HIPIMS-UBM deposited TiAlCN/VCN coating is revealed in this work. Two-flute
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25 mm diameter, 2.5 mm radius high-speed machining end mills from S290 HSS 

material are coated with TiAlCN/VCN nanoscale multilayer coating by HIPIMS-UBM

technique. The end mills were used for dry machining of wrought A17010-T7651 alloy 

(figure 3.22), most frequently nowadays used in aerospace applications. Dry high-speed 

machining process is shown in figure 41. A MAZAK FJV-25 high speed milling 

machine is used to carry out this test. The spindle speed of about 24000 rpm, cutting 

speed Vc of 1850 m/min was set as milling test parameter. The feed rate Vf = 0.33 

mm/rev with cutting depth Ap and cutting width Ae of 4 mm and 2 mm respectively was 

achieved during the machining. The flank wear was calculated by optical microscope 

analyser. The test was interrupted every 5 min and flank wear was calculated. 

Additionally, Raman spectra were collected from tool edge after certain interruptions in 

order to understand the chemical integrity with the microstructure of the coating. The 

performance of the TiAlCN/VCN coating deposited by HIPIMS-UBM technique was 

compared with UBM deposited TiAlCN/VCN coating under similar machining 

conditions. The chemical compositions of work piece (Al-alloy) are wt% Cu 1.68, Mg 

2.11, Mn 0.01, Zn 5.92, Fe 0.08, Si 0.04 and rest of the composition was Al.

Axial feed

Spindlespeed

Figure 41 Schematic picture of machining by coated two-flute milling cutter.
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CHAPTER 4

Results

In this chapter the results of various characterisation performed on nanoscale 

TiAlCN/VCN coating has been presented. The characterisation technique involves 

plasma compositional analysis carried out during the surface pre-treatment and 

deposition of nanoscale coating, followed by analysis of coating microstructure and 

functional properties at both room and elevated temperatures (200 °C, 450 °C, 650 °C). 

The nanoscale TiAlCN/VCN coatings were deposited by three different ways in 

combination of reactive pure UBM and HIPIMS, these are:

(i) Reactive pure UBM,

(ii) Combined HIPIMS and UBM (will be written later as HIPIMS-UBM),

(iii) Reactive pure HIPIMS.

Prior to actual deposition of the coating, initial surface pretreatment step was carried out 

by HIPIMS technique in all three cases. During this step, the Ar++V+ ions were attracted 

towards the substrate at a voltage of about Ub = - 1000 V. Hence, the effective energy of 

the bombarding ions were maintained in the range between 900 - 1000 eV. In the later 

steps of the processes, deposition of TiAIN base layer and nanoscale TiAlCN/VCN 

coating was carried out at bias voltage of Ub = - 75 V, where the arrival ions on the 

substrates were bombarding with equivalent ion energy of 75 eV. Hence the basic 

intention of the work was to understand the impact of HIPIMS on the microstructure of 

the TiAlCN/VCN coating by understanding its plasma characteristics. Further few more 

characterisations techniques have been used in order to reveal the overall performance 

of the coating in real world applications for which TiAlCN/VCN coating was 

developed. The results obtained from all characterisation experiments are supported by 

the discussions and conclusions presented in the following chapter of 5 and 6 

respectively.

4.1 Plasma compositional analysis during TiAlCN/VCN deposition

The plasma compositional analysis was carried out to investigate the chemistry 

of ion flux, by calculating metal-to-gas ion ratio reaching the substrate during both
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surface pretreatment and coating deposition. Ionic composition of plasma was 

determined by energy resolved mass spectrometry. The ionic compositions during 

HIPIMS etching step and coating deposition of TiAlCN/VCN by UBM and HIPIMS 

was investigated near the substrate facing the 3 inch diameter targets of V, TiAl 

respectively. The results were recorded for conditions corresponding to V metal ion 

etching (using V target in HIPIMS mode in Ar atmosphere) and coating deposition of 

TiAlCN and VCN (using TiAl and V targets in HIPIMS and UBM mode operated in 

atmosphere of Ar, N2, and C 2 H 4 ) .

4.1.1. Metal ion-to-gas ion ratio during HIPIMS etching

The plasma analysis is carried out in laboratory scale ultra high vacuum (UHV) 

chamber. During HIPIMS pre-treatment the peak pulse current to the substrates 

reaches/s =  300 mA/cm'2 and average current wasys = 3 mA/cnf2. Figure 4.1 shows a 

mass spectrum collected at the substrate position during the HIPIMS pre-treatment step. 

The majority of metal ions produced were V2+ with 27%, and ionization states of up to 

5+ were detected. V ions had concentrations of V1+ (24%), V2+(27%), V3+(4%), 

V4+(0.8%), and V5+(0.2%) making up a combined relative percentage of 56%. Ar1+ 

(31%) and Ar2+ (13%) ions contributed together 44% of the total. Very clearly this has 

been shown below in a pie-chart 4.2. Figure 4.3 shows the energy distribution of single, 

double and triple charged ions. The average energy of all the ions was in the range of 1 - 

2 eV.
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Figure 4.2 V+ + Ar+ ion percentage calculated from time average mass spectrum 

collected at the substrate during HIPIMS etching step.
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Figure 4.3 Energy spectra of the substrate ion flux generated by HIPIMS of V++Ar+ ion 

discharge.

4.1.2 Metal ion-to-gas ion ratio during deposition of TiAlCN and VCN by UBM

Figure 4.4 shows the time averaged mass spectrum collected at the substrate 

during the deposition of TiAlCN and VCN by HIPIMS and UBM techniques, 

respectively. During the deposition of TiAlCN in UBM mode, about 97% of the plasma 

was dominated by gas (Ar) and only -3%  of metal ion content distributed among A ll+= 

2.8%, T i1+= 0.23%, and C 1+=0.13% was identified. Similarly during VCN deposition, 

the metal ion (V1+) concentration was 0.56% with 0.18% of C l+ ion and 99.26% gas 

ions. This has been illustrated highlighted by the pie-chart Figure 4.5a and b.
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4.1.3 Metal ion-to-gas ion ratio during deposition of TiAlCN and VCN by 
HIPIMS

During the coating the current was again j s = 3 mA/cm'2. During the 

deposition of TiAlCN in HIPIMS mode, the metal ion concentration was about 12% 

distributed among Ti1+ ~ 2%, Al1+ ~ 9% and C1+ ~ 1%, and gas ion concentration was 

dominated with a value of 8 8 %. For VCN, the metal ion (V1+) concentration was 7.73% 

with 0.49% of C1+ ion and 91.78% gas ions. In Figure 4.6, pie chart explains the ionic 

content of the HIPIMS plasma, calculated from the time averaged mass spectrum 

(Figure 4.4) collected during HIPIMS deposition case.

During the deposition of TiAlCN/VCN coating by both HIPIMS and UBM, 

apart from metal ions and free carbon, the gas ions of the following species were 

identified in mass spectra: Argon, N2, stable hydrocarbons (CH4, C2H2, C2H4 , C2H6, 

C3H8), radicals (CH, CH2, CH3, C2H, C2H5, C3H2, C3H3, C3H6, C3H7), and nitril 

compounds (HCN, H2CN, NH, and NH3). This has been clearly shown in the mass 

spectrum of Figure 4.2.
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Figure 4.5 Time averaged mass spectrometry results for UBM deposited (a) TiAlCN 

(b) VCN coating.
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deposition of (a) TiAlCN (b) VCN coating.
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4.2 Mechanical and tribological properties

Table 4.1 summarises the mechanical and the tribological properties of 

nanoscale TiAlCN/VCN coatings deposited by three methods. The values measured for 

micro hardness (HK0.025), adhesion (Lc), and surface roughness (Ra) were marginally 

differed. Whereas the remarkable difference can be seen in values of COF (p) at room 

temperature and wear behaviour of the coating analysed for wear track generated at 

room temperature. The COF and wear coefficient results can be correlated which will be 

discussed in the discussion section. But it is very important to notice that the wear 

coefficient of UBM deposited coating has shown about two order of magnitude higher 

value than the coating deposited with HIPIMS-UBM and pure HIPIMS. Also the nano 

hardness value was observed to be lower for pure HIPIMS deposited coating than other 

two deposition techniques.

This clearly indicates the influence of high energy bombardment effect during 

the growth of TiAlCN/VCN coating when HIPIMS was utilized in combination with 

UBM and pure HIPIMS alone as a separate process. Table 4.2 summarises the 

tribological properties for TiAlCN/VCN coating at elevated temperatures of 200 °C, 

450 °C and 650 °C.

Nanoscale
TiAlCN/VCN

Coating

Micro
hardness,

HK0.025

Adhesion 
Lc (N)

Surface 
roughness, 

Ra (pm)

Nano-
Hardness

(GPa)

Coeff.of
Friction

(p)

Sliding 
Wear coeff. 
(itf’N 'W 1)

UBM 2900 57 0.026 29 -0.68 4.2xl0 '15

HIPIMS-UBM 3000 57 0.023 25 -0.45 1.4x10‘17

HIPIMS 2900 58 0.022 13 -0.45 4.4 x 101S

Table 4.1. Summary of the mechanical and tribological properties of TiAlCN/VCN 
coating at room temperature.
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In contrast, the elevated temperature tribological performance was marginally 

differing with respect the COF and wear coefficient values are concerned. High 

temperature pin-on-disc tests have shown (next section) that the COF of 

HIPIMS-deposited TiAlCN/VCN initially increases to p = 0.8 at 200 °C and 

then decreases to p = 0.45 at 650 °C. HIPIMS deposited TiAlCN/VCN show 

superior performance at elevated temperatures of 650 oC, (Kc = 1.0 x 10'13 m3N‘ 

lmA) over the UBM deposited (Kc = 5.8 x 10'13 ir^N 'W 1).

The reason behind individual coating performance at elevated temperature 

is believed to be the combined influence of tribo -oxidation (at the asperity 

contacts) and external oxidation which will be discussed in detail later in the 

discussion section.

Temperature TiAICN/V CN
(°C) 200 450 650

Coeff.of UBM 0.71 0.5 0.47

Friction H-U 0.7 0.5 0.45
(n) HIPIMS 0.8 0.5 0.4

Sliding UBM 9.32xl0’14 l.lx lO '13 5.3xl0’13
Wear
coeff. H-U 8.84 xlO'14 9x xlO’14 l.lx lO ’13

(n^N'W 1) HIPIMS 1.96 xlO’14 4.86 xlO'14 lxlO '13

Table 4.2. Summary of the tribological properties of TiAlCN/VCN at elevated 

temperatures.

4.2.1 Adhesion scratch and Rockwell-C indentation test

The adhesion of TiAlCN/VCN coating deposited by all the three methods were 

measured using scratch adhesion and Rockwell-C indentation tests, which were 

evaluated by the critical load and categorized by the indentation grades (HF1-HF6)
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respectively. Figure 4.7 shows the optical images of the scratch (arrow indicates the 

direction of the scratch) and the Rockwell-C indent for TiAlCN/VCN coating deposited 

by all three methods. The coatings deposited for HIPIMS-UBM and HIPIMS have 

shown HF 1 and HF 4 grade for Rockwell-C indentation test respectively, whereas 

UBM deposited coating was appeared to be fallen under grade HF3 which are within 

acceptable standards of gradings. The critical load was increased from 5 N to 60 N for 

all coatings deposited by three methods. Irrespective of the deposition type, high but 

similar critical load values in scratch adhesion tests of Lc > 50 N were obtained for all 

the three cases of deposition. But significant difference in the images can be seen after 

57 N load, where UBM deposited coating (fig. 4.7a) has shown some micro flaking and 

substrate under the coating was clearly exposed out. Where in later two cases (fig. 4.7b 

and 4.7c) coating was still adherent to the substrate even after exceeding the critical 

load limit to more than 60 N. The microhardness was in a range of H K 0 .0 2 5  ~ 2900 -  

3000, marginally different with higher values measured for the (HIPIMS-UBM) case. 

The surface roughness values were in the range of Ra = 0.022- 0.026, where slightly 

lower value for HIPIMS-UBM and HIPIMS deposited coating was measured than UBM 

deposited coating.
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Figure 4.7 Optical images of Rockwell-C indentation and scratch adhesion test 

performed on TiAlCN/VCN coating deposited by (a) UBM (b) HIPIMS-UBM and (c) 

pure HIPIMS
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4.2.2 Tribological test

Tribological tests were carried out to understand the friction and wear behaviour 

during the dry sliding conditions of the nanoscale TiAlCN/VCN coating against AI2O3 

ball counterpart. The tests were conducted using pin-on-disc geometry tribometer 

capable to operate at both room and elevated temperatures as described in chapter 3. A 

comparative approach was taken by measuring the properties for TiAlCN/VCN coating 

deposited by three different methods.

(a) Friction behaviour of coating at room temperature

Room temperature friction behaviour of the coating is shown in Figure 4.8. The 

coating deposited by HIPIMS-UBM and pure HIPIMS technique shows lowest COF of 

p ~ 0.45, than COF of p = 0.68 has been measured for UBM deposited TiALCN/VCN 

coating. Instantaneous increase in the friction COF has been observed in all cases 

immediately after the run in period of sliding in the range of about 0 to 500 laps. Later 

the friction curve appeared to be stabilized which is called “steady state” zone. But the 

careful observation of “run in” stage of friction curve obtained for pure HIPIMS 

deposited coating (red colour), appeared to be very smooth than other friction curves 

obtained for UBM (black colour) and HIPIMS-UBM (purple colour). The room 

temperature friction curve for pure HIPIMS deposited coating is separately shown in 

Figure 4.9. The curve depicts clear slope of “run in” stage and beginning of the "steady 

state" of the dry sliding process. Through this curve one can clearly distinguish between 

two friction zones and possible contribution from that particular sliding zone of the 

coating against the counterpart (AI2O3 in this case). Immediately after the "run in" stage 

the friction curve changes its slope indicating the beginning of the first lower coefficient 

of friction zone where the mean value of p=0.37. After that the friction gradually 

increases to reach a "steady state" where higher coefficient of friction values (p=0.48) 

were recorded.

In an attempt to explain "depth profile" the friction behaviour of the 

HIPIMS deposited TiAlCN/VCN coatings a number of friction tests were carried out 

with stepwise increase of the sliding distance by changing the number of the sliding laps 

from 500 to 10000 with an increment of 1000 laps. In this attempt, the friction value of 

p=0.37 was measured for initial 1000 laps and slightly higher COF of p=0.48 was
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measured for larger sliding distances (or laps). Similarly after “depth profiling” by 

sliding, wear behaviour of the coating was also analysed which is discussed in the next 

section of this chapter.

TiAlCN/VCN 
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(25 °C)
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Figure 4.8 Room temperature friction curves against the number of laps for 

TiAlCN/VCN coating, deposited by UBM, HIPIMS-UBM, and HIPIMS.
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Figure 4.9 Coefficient of friction curves (p), versus number of laps for reactive HIPIMS 

deposited TiAlCN/VCN coating: a) - room temperature test.

(b) Friction behaviour at elevated temperature

Figure 4.10 shows the coefficient of friction (p) vs number of laps curve for 

TiAlCN/VCN coating during sliding and elevated temperatures of 200°C, 450°C, and 

650°C at 20% humid atmospheric condition. The coatings deposited by all the three 

methods have shown almost similar trends and nearly equal COF friction values at 

above mentioned temperatures. Increase of the test temperature to 200°C resulted in 

increase of the coefficient of friction to p=0.8. Subsequently at 450°C and 650°C, a 

gradual decrease in the friction coefficient value to p=0.5 and p=0.45 was observed 

whereas the wear rate was negligibly increased which will be discussed next section.
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Figure 4.10 Coefficient of friction curves for TiAlCN/VCN coating during sliding for 

room and elevated temperatures of 200°C, 450°C, and 650°C.

(C) Sliding wear behaviour of the coating at room and elevated tem peratures

The wear behaviour of the coating at room and elevated temperatures were 

evaluated by calculating their sliding wear coefficients using Archard’s equation as 

explained in chapter 3. The wear coefficients values measured for wear tracks generated 

on TiAlCN/VCN coated disc at room temperature are given in table 4.1. The respective 

wear track depths profile images are shown figure 4.11 below. The wear track depths 

were measured to be about ~ 2.3 pm, 0.7 pm and 1.8 pm respectively for UBM, 

HIPIMS-UBM and pure HIPIMS deposited TiAlCN/VCN coating. The approximate 

correlation between the COF and wear coefficient (Kc) can be clearly noticed as UBM 

deposited coating has shown higher COF with p = 0.68 with corresponding wear rate of 

Kc = 4 .2x l0 '15 m ^ N 'W  and higher depth of wear track. In the case of HIPIMS-UBM 

and pure HIPIMS deposited coating, wear track depth was comparatively less than 

UBM deposited coating with respective measured wear rate of Kc = 1.4x10 17 and 4.4 x 

10'16 m ' W 1.
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For UBM deposited TiAlCN/VCN coating, the increase of the dry sliding test 

temperature to 200°C resulted in the increase of wear coefficient to about 9.32x1 0"14 

m3N’Im '1 from wear coefficient measured at room temperature. Subsequently at 450°C 

and 650°C, wear rate was negligibly increased to single order of l.lx lO '13 -to- 5.3x10"13 

rn^N 'W 1 respectively.

In the case of HIPIMS-UBM deposited coating, wear rate coefficient was 

negligibly lower (8.84 xlO '14 m V ’m '1) at 200 °C compared to UBM deposited coating. 

Further at 450 °C and 650 °C, though sliding wear was slightly higher (9 xlO '14 m3N'*m' 

1 and 1.1 xlO '14 m ^N 'W 1 respectively) when compared to UBM, value was lower by 

factor of 2 and 5 respectively. Finally, for pure HIPIMS deposited TiAlCN/VCN 

coating, the superior wear performance was observed (Table 4.1) over the UBM 

deposited ones tested at all temperatures.
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Figure 4.11 The wear track depth profile generated at room temperature for (a) UBM 

(b) HIPIMS-UBM and (c) pure HIPIMS deposited TiAlCN/VCN coating.
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4.2.3 Nanohardness measurements

Nanohardness measurements were carried out to know the plastic response of 

TiAlCN/VCN coating from within 10% of its total thickness from top. Tests were 

conducted on all the coatings deposited by UBM, HIPIMS-UBM and pure HIPIMS 

technique. Plastic hardness values are given in table 4.1. Berkovich diamond indentor 

was released on the coated disc, by gradually increasing the normal load from 0 mN to 

maximum up to 20 mN. Figure 4.12 shows the maximum depth that indenter was 

released against the max normal load applied for TiAlCN/VCN coating deposited by all 

three techniques. The plastic hardness of HP = 13 GPa measured for coating deposited 

by pure HIPIMS technique was significantly lower compared to UBM and HIPIMS- 

UBM deposited coatings, i.e., 27 GPa and 30 GPa respectively. Moreover, the 

maximum indentation depth for pure HIPIMS deposited coating was more to about 350 

nm under similar test conditions as explained above.

20
HIPIMS-UBM UBM Pure HIPIMS

15-

z
I I  10-
Q)o
o

Li-

1000 200 300 400 500
Depth (nm)

Figure 4.12 Nano-indentation curves showing normal force versus depth of indentation 

for TiAlCN/VCN coating deposited by UBM, HIPIMS-UBM and pure HIPIMS 

technique.
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4.3 Structure and microstructure analysis

4.3.1 X-ray diffraction studies

4.3.1a Low angle XRD analysis

Low angle XRD spectrum was taken on TiAlCN/VCN coating deposited by all 

three techniques in order to confirm the multilayer structure. Figure 4.13 shows low 

angle XRD spectrum for coating deposited by UBM and HIPIMS-UBM, since it was 

difficult to detect the low angle reflections for pure HIPIMS deposited coating. Hence 

glancing angle XRD spectra was taken and structure of coating was analysed for coating 

deposited by pure HIPIMS technique, which will be discussed in coming paragraph 

4.3.1c. Low angle XRD analysis unambiguously showed the nanoscale multilayered 

structure of the films by detecting the reflections at 20= 2.3° and 3.4° respectively for 

UBM and HIPIMS-UBM deposited coating. This pattern was used to calculate the bi­

layer period (A) which was found to be 2.2 nm.
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Figure 4.13 Low angle X-ray diffraction pattern reflecting the nanolayered structure of 

TiAlCN/VCN multilayer coating deposited by UBM and HIPIMS-UBM technique.
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4.3.1b Brag’s Brentano XRD analysis

The average microstructure was determined using X-ray diffraction. The 

0-20 XRD measurements using Philips X'pert MPD automated diffractometer and Cu 

Ka-radiation revealed the preferred orientation of TiAlCN/VCN coating. Figure 4.14 

shows the 0-20 XRD measurements. The diffraction peaks have clearly exhibited 

single-phase NaCl FCC unit cell structure with a {111} and {220} preferred orientation. 

Also, planes oriented towards {200} direction overlapped with substrate peak was also 

observed.

5000
HIPIMS-UBM

UBM

4000
(311)

^  3000 
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(400)
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(220)

30 50 6040 70 90 10080
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Figure 4.14 shows the 0-20 XRD diffraction pattern for TiAlCN/VCN multilayer 
structure.

4.3.1c Glancing angle XRD analysis

Glancing angle parallel beam geometry was used to determine the phase 

composition and structure of the coating as a function of the penetration depth using a 

Panalytical X'Pert automated diffractometer. In glancing angle geometry the penetration 

depth is defined as the distance, xe from the surface that the diffracting planes in the 

specimen contribute to the whole diffracted intensity by the ratio Me and can be
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calculated by the equation as explained in the chapter 3 section 3.5.1. The GA 

measurements were performed at incidence angles of 1°, 2°, 5° and 10°, respectively. 

The diffraction patterns are shown in Figure 4.15. The data for the calculations of 

TiAlCN/VCN is summarised in Table 4.3 and the results are presented in Table 4.4. The 

depths of penetration which were averaged between 2 0  values of 2 0 - 1 1 0 ° and assuming 

intensity attenuation Me were as follows: 0.360 pm, 0.720 pm, 1.798 pm and 3.583 pm 

at the incidence angles used (Table 4.4). The structure was found to be single phase fee  

structure (NaCl) and resolving individual reflections from the TiAlCN and VCN phases 

was not possible. Depending on the incidence angle the shape of the diffraction peaks 

changes from broader and lower intensity peaks at small angles, ( 1  °, 2 °) to sharper and 

higher intensity peaks as well as additional reflection from {311} and {222} plains at 5° 

and 10°. This is confirmed by the FWHM measurements where for the (111) reflection 

the values change from 2.77° at 1° to 1.55° at 10°.
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Figure 4.15 GAX-ray diffraction patterns taken at various incidence angles.
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TiAlCN/V CN Ti AI V c2 n 2

Weight (amu) 178 48 27 51 24 28
Weight concentration,

cw (%) 26.97 15.17 28.65 13.48 15.73

p / p  a tE  = 8 keV 2 0 2 50 221.7 4.576 7.142
p  (gem'3) 4.51 2.7 5.96 3.51 1.17xl0'3

Cw P i  P 127.3 54.47 7.58 63.52 0.62 1 .1 2

Cw p 3.81 1 .2 2 0.409 1.71 0.473 1.83xl0'4

Table 4.3 Physical parameters for individual elements and calculated values for 

TiAlCN/VCN used to evaluate x-ray absorption depth.

angle depth, xe (pm):

1 0.360

2 0.720

5 1.798

1 0 3.583

Table 4.4 X-ray absorption depth for TiAlCN/VCN as a function of angle of incidence

4.3.2 Raman Spectroscopy analysis

The Raman spectra were collected from the surface of as-deposited 

TiAlCN/VCN coatings deposited by UBM, HIPIMS-UBM and pure HIPIMS 

techqnique. The spectra were shown in figure 4.16. The spectra were collected in the 

range of 1000 cm ' 1 - 2000 cm'1. In all three cases, the spectra have shown two important 

Raman features: broad bands around -1380 cm' 1 and -1580 cm ' 1 which are designated
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to D (disorder) and G (graphitic) peaks respectively. The spectrum obtained was 

deconvoluted (fig 4.13) with a Lorentzian shape and ID/IG ratio was calculated to find 

out the sp2/sp3 contents of the film. The D peak position of 1379 cm ' 1 and G peak 

position of 1582 cm ' 1 have found to be down shifted to 1367 cm ' 1 and 1578 cm '1, 

respectively, when measured for HIPIMS-UBM deposited coating. When compared to 

Raman spectra obtained for pure HIPIMS deposited coating, the G peak is slightly 

shifted to higher value of 1381 cm ' 1 and down shifted to 1575 cm '1, respectively. The 

ID/IG value measured to about ~ 0.93 in case of UBM deposited coating, which is 

found to increase to about ~ 1.08 and ~ 1.64 respectively for HIPIMS-UBM and pure 

HIPIMS deposited coating.
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Figure 4.16 Raman spectra of as deposited TiAlCN/VCN coating by UBM, 

HIPIMS/UBM and pure HIPIMS technique showing the D and G bands.
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4.4 Microstructural analysis

4.4.1 Scanning electron microscope analysis

The microstructure of TiAlCN/VCN films was studied by cross section SEM 

and TEM analyses. The coatings were deposited on Si wafers, which provide a better 

substrate for cross-section SEM samples and stainless steel coupons for the TEM 

studies. Figure 4.17 shows cross sectional SEM image of TiAlCN/VCN multilayer 

structure deposited by UBM and HIPIMS-UBM. Figure 4.17a image depicts open, 

broken-rock like coarse columnar structure. Most of the columns are terminated with 

horizontal terraces, which indicate relatively weak interface bonding between the 

individual layers of the nanolaminated material. In contrast a very dense almost glassy 

cross section is observed for the HIPIMS/ (HIPIMS-UBM) deposited coatings, Fig 

4.17b. Further, clear contrast can be seen between the base layer and coating region 

without any horizontal terrace like fracture sites coating part which was observed in like 

UBM deposited coating 4.17a.

Similar cross-sectional studies have been carried out for TiAlCN/VCN coating 

deposited by pure HIPIMS technique. Figure 4.18(a) shows the fractured cross-sectional 

SEM micrograph of TiAlCN/VCN coating deposited on silicon wafer using pure 

HIPIMS technology. The micrograph reveals the columnar structure of the coating with 

three distinctive zones. The adjacent to the substrate first zone is the carbon free 

(TiAIN) base layer which shows highly dense small diameter (-60 nm) columns 

terminated with flat tops. This is followed by a narrow dark band (-250 nm) where no 

structural features can be observed under SEM, second zone. The third zone represents 

the bulk of the coating consisting larger diameter (-180 nm) columns. The columns are 

slightly wider on the top but no structural features associated with competitive growth 

mechanism can be clearly observed. Interestingly the columns have a peculiar granular 

(cauliflower like) structure which can be clearly seen on the micrograph taken at higher 

magnification, Figure 4.18(b). The major difference in the cross section structures 

between pure HIPIMS, UBM and HIPIMS-UBM deposited coating is the absence of 

the zone two (featureless dark band) for the coating produced by the UBM and 

HIPIMS-UBM process.
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Figure 4.17 SEM cross-section of as-deposited TiAICN/VCN multilayer coating a) 
HIPIMS/UBM deposited b) HDPIMS/(HIPIMS-UBM) deposited.
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Figure 4.18 SEM cross-sectional view of TiAICN/VCN nanoscale coating deposited by 
reactive pure HIPIMS deposition (a) lower magnification coating cross-section (b) 
higher magnification coating cross-section.
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4.4.2 Transmission electron microscope analysis

Figures 4.19a and 4.19b depict low magnification bright-field images of TEM 

cross-sections of TiAICN/VCN multilayer coating deposited by HIPIMS/UBM and 

HIPIMS/(HIP1MS-UBM) techniques respectively. The structure of all important coating 

zones such as interface, base layer the bulk of the coating and the top surface of the 

coating has been clearly revealed. The coating -substrate interface appears very sharp 

and clean, no contamination or amorphous layers can be observed.

Significant structure differences however can be seen in the base layer as well as 

in the bulk of the coating depending on the deposition technique used. For the UBM 

deposited coatings (Fig 4.19a) a coarse columnar structure can be observed. The top of 

the columns in both base layer and coating are dome shaped which is typical for 

coatings grown in conditions of low energy ion bombardment. The structure is under- 

dense and many inter-columnar voids can be observed, indicated by arrows in the 

figure. The voids in some cases start right from the interface and continue through the 

base layer and bulk of the coating.
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Coating

i------------1
200 nm

Fig. 4.19 Cross-sectional TEM micrographs of a) HIPIMS/UBM, showing open 
columnar boundaries and b) HIPIMS/ (HIPIMS-UBM),

Further, cross-sectional TEM imaging has been revealed to understand the detailed fine 

structure of the HIPIMS deposited TiAICN/VCN coating which has shown significantly 

different morphological structure in SEM (in Fig. 4.18). Figure 4.20a is a low 

magnification BF image, which shows the structure of the main coating areas such as 

TiAIN base layer followed by uniform gray contrast narrow band, followed by area with 

columnar structure where the column boundaries are decorated with a white phase of a 

light atomic weight element. The location of the narrow grey contrast band adjacent to 

the base layer corresponds to the zone two of the SEM cross section, see Figure 4.18a. 

Higher magnifications revealed further details of the coatings architecture, Figure 4.20b. 

A nanoscale multilayer structure with bi-layer thickness of 5-8nm and total thickness of 

30nm can be observed right above the TiAIN base layer. This is believed to correspond 

to zone two of the cross section SEM and the grey contrast band in the low 

magnification TEM image, Figure 4.20a. Careful observation reveals a white lateral 

phase segregated at the interfaces of the individual layers.
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The structure which evolves further with coating growth is one of a typical 

nanocomposite consisting of dark contrast grains (most probably Me-CN where Me is 

Ti-Al-V) surrounded by carbon-based phase forming a white contrast tissue phase. The 

largest grains with diameter in the range of 5-10 nm are formed right after the band with 

nanoscale multilayer structure. Figure 4.21 is a High Resolution TEM micrograph 

showing the nanocrystalline grains and the surrounding tissue phase structure. The grain 

size reduces gradually with thickness at the expense of the white phase and no grains 

can be seen on the very top region of the coating.

(a)

Coating

Base Layer

Substrate 0 .5  jim
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Figure 4.20 BF TEM cross-section of TiAICN/VCN nanoscale coating deposited by 
reactive HIPIMS deposition (a) lower magnification coating cross-section (b) higher 
magnification coating cross-section.
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Figure 4.21 HRTEM micrograph of the zone with nancomposite structure of 
TiAICN/VCN.

4.4.3 Electron diffraction X-ray Analysis (SAED)

In order to further confirm the XTEM results such as X-ray amorphous and 

nanocomposite zone of the TiAICN/VCN coating, point EDX analyses were carried out 

in different zones of the coating namely base layer and nanoscale multilayer, bulk of the
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coating and top of the coating. Figure 4.22 a, b, c. The analyses shi 

transformation in the structure with thickness of the coating takes p 

crystalline at the base to nanocrystalline in the bulk and finally randc 

grain nanocrystalline to almost X-ray amorphous structure on th e  top

O )

t '

5 1/nm
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Figure 4.22 SAED patterns taken from various coating zones: a) TiAIN base layer/ 
nanoscale multilayer zone, b) nancomposite zone, c) top of the coating.

4.5 Oxidation analysis

The oxidation analysis of TiAICN/VCN coating was carried out in order to 

understand the stability of the microstructure of as deposited coating and phase 

composition of oxidised surfaces of the coating. Oxidation tests were conducted on all 

as-coatings deposited by all three methods, after exposing the as-deposited coating 

surface to extreme thermal loads at both isothermal and non-isothermal conditions. That 

means, the analysis was carried out in two different conditions. Initially the isothermal 

oxidation test was carried out by Thermogravimetric (TG) analysis as explained in 

chapter 3, where the onset of oxidation capacity of the coating was determined and as- 

formed oxide phases were identified. In another analysis, the oxide debris formed inside 

the wear track generated by dry sliding friction operation at both room temperature and 

elevated temperature was studied. These particular studies were carried out by both 

XRD and Raman spectroscopic technique.



4.5.1 Thermo gravimetric analysis

Figure 4.23 plots TGA oxidation rate measurements for the TiAICN/VCN 

coating on stainless steel substrates, deposited by UBM, HIPIMS-UBM and pure 

HIPIMS methods. In these measurements a linear temperature ramp at 1°C/ min from 

room temperature to 1000°C was used. The experiments reveal that the oxidation 

process develops in two stages. The coatings deposited by all the three methods have 

shown similar stages of oxidation process. After an initial slow mass gain, the first 

small step increase in the mass can be detected at around 550°C followed by a steep 

mass increase at 800°C, which represents the temperature the onset of rapid oxidation, 

at about 800°C. It is also interesting to note that the amount of oxygen diffusing into the 

coating at elevated temperatures, represented by a sample weight-gain, is greater for the 

UBM deposited coating (curve 1) as compared to both HIPIMS-UBM (curve 2) and 

pure HIPIMS (curve 3) deposited coating. This can be clearly seen in Figure below 

where the oxidation curve of the UBM deposited coating shows about 30% more weight 

gain compared to that of the HIPIMS-UBM deposited coating. Further, the weight gain 

due to the oxidation is lower by factor of two in the case of pure HIPIMS deposited 

coating when compared to UBM deposited TiAICN/VCN coating. Furthermore, 

compared to the UBM and HIPIMS-UBM deposited coatings, no initial oxidation at 550 

°C was observed for coating deposited by pure HIPIMS technique.

4.5.2 Phase composition and microstructure of the oxide scale on TiAlCN/VCN
films deposited by mixed HIPIMS-UBM techniques

Glancing angle-XRD analyses were carried out to determine the phase 

composition of the oxides. Figure 4.24 shows GAXRD pattern of the as-deposited and 

oxidised surface of TiAICN/VCN coating deposited by mixed (HIPIMS-UBM) taken at 

an incident angle of 2°. The coated samples were heat-treated isothermally in the 

furnace of the TGA system for 15 min at 560°C, 670°C, and 750°C respectively. The 

temperatures were chosen on the basis of the specific regions of the T-G curve in Figure 

4.23.
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Figure 4.23 Thermo gravimetric oxidation rate measurements using linear ramp at

1 °C/min for UBM, HIPIMS-UBM and reactive HIPIMS deposited TiAICN/VCN 
coating.

The as-deposited coating has shown single phase Bl-NaCl structure, with strong 

(111), (200) and weak (220) peaks. The coating oxidised at 560°C, (immediately after 

the first step mass gain) show a mixture of different oxide phases of TiC>2 (Rutile and 

Brookite), VCF V 2 O 3 , V 3 O 7 , V 2 O 5  and A IV O 4 . Due to peak overlap it is difficult to 

identify unambiguously the exact oxide phases present. The peaks from the as-deposited 

coating have not been detected, which may be due to the oxide thickness of the coating 

which cannot be penetrated by the X-rays at the selected small incident angle.

The oxidised surface of the coating after 200 °C have shown very thick layer, 

probably of crystalline 01-AI2 O3 , formed due to the initial reaction between the A1 and 

oxygen molecules forming a protective layer against rapid oxidation. The figure 4.25 

shows the SEM micrograph of oxidised surface of TiAICN/VCN coating after 200 °C. 

The EDX spectrum clearly shows the A1 peak which clearly supports the fact of 

formation of Al-rich oxide phase at these early stages of oxidation process. This result is

1. UBM
2. HIPIMS-UBM
3. Pure HIPIMS

1

/ 3
500 600 700 800 900
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further confirmed through Raman analysis of wear track generated at 200 °C, which 

successfully identified the traces of (X-AI2O3 phase formed due to tribo-oxidation.
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Figure 4.24 2° Glancing angle X-ray diffraction pattern of TiAICN/VCN multilayer 
coating at as deposited condition and elevated temperature regions of 560°C, 670°C and 
750°C.
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Figure 4.25 Oxidised surface morphology of TiAICN/VCN coating below 450 °C, 

showing Al rich oxide phase (EDX graph).

Figure 4.26a shows the morphology of the oxide scale formed at 560°C. Two structural 

features can be identified, very small irregular shape oxide particles overgrown by 

plate-shape oxides. ED AX measurements showed that the plate-shape oxides were V- 

and Ti- deficient and richer in Al, which most probably indicates the A I V O 4  phase. 

Further increase of the temperature to 610°C leads to conversion of the small irregular 

shape oxides to oxides with fine needle-like structure, which grows around the plate­

like oxides. The ED AX measurements [fig. 4.27] from the areas occupied by the needle­
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like oxides showed that they are richer in V. Some amount of AIV2O phase was also 

detected. In summary, at 670°C the most dominant phases could be detected are V2O5, 

Ti0 2  (Rutile) and AIVO4 all of which classified as Magneli phases. Figure 4.26b shows 

the surface after 670°C, where uniform oxidation can be observed. The scale surface 

can be described as one with a cauliflower morphology produced by oxides, which 

contain more fractions of V-rich phases.
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Figure 4.26 Oxide morphology of the TiAICN/VCN coated surface after annealing at: a) 
560°C, b) 610°C and c) 750°C.
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Figure 4.27 ED AX measurements showing the elemental peaks from the TiAICN/VCN 

coating oxidised at (a) 560 °C and (b) 670 °C.

At 750°C, a temperature close but below the onset of rapid oxidation (800°C), a further 

increase of the intensity of the peaks detected at 670°C can be observed, which indicates 

simply a kinetic progression of the oxidation process. In comparison, in the case of 

UBM deposited coatings the potentially lubricious oxides of V 2 O 5 ,  A I V O 4  and TiCh 

well adherent to the substrate were present to temperatures up to 750°C. As no Cr, Ni or
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Fe based oxides were detected. SEM observations showed oxide scale morphology 

similar to that formed at 670°C, Fig.4.26c.

4.5.3 Morphology of worn surface after sliding friction

To better understand the wear mechanism of the coating which takes place at 

different environmental conditions (temperature and humidity), the morphology of the 

wear tracks was studied by SEM. Figure 4.28 shows the SEM images of the wear tracks 

of HIPIMS-UBM deposited coating produced in dry sliding conditions at room and 

various elevated temperatures 200°C, 450°C and 650°C, which reveal further 

information about the wear mechanism. The wear tracks in all cases seem to be very 

smooth except for the one generated at 200°C.

SEM analysis showed that the wear track at room temperature is relatively 

narrow (-157.9 pm) and very smooth with oxide debris (black in colour) accumulated 

along the track. Careful observation inside the wear track shows formation of shallow 

grooves parallel to the sliding direction. At 200°C, the wear scar appears to be rough 

with increased width of 338.43 pm. At 450°C, the wear track appears very smooth 

without any parallel grooves at the middle of the wear track. At this stage as indicated 

by the TG curve a larger amount of lubricious oxides is formed, which provide more 

effective solid lubrication resulting in smooth wear surface morphology. The smoothest 

wear track morphology is achieved at the highest test temperature of 650°C
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Figure 4.28 The SEM micrographs of wear track generated at (a) room temperature, (b) 

200°C, (c) 450°C, (d) 650°C.
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4.5.4 Raman analysis of worn surface

Figure 4.29 shows Raman spectra undertaken on the as-formed wear debris 

accumulated along the side of the wear track in the pin-on-disc test carried out at 

various temperatures, (ambient, 200, 450 and 650°C).

A t  a m b i e n t  a n d  200 °C t e m p e r a t u r e s  a  s e r i e s  o f  b r o a d  R a m a n  b a n d s  c e n t r e d  a t  

237, 652, 896, 1321 a n d  1579 c m '1 w e r e  c l e a r l y  o b s e r v e d ,  F i g .  4.29. T h e  s p e c t r a  i n  t h e  

200 c m '1 t o  800 c m '1 b a n d  l o o k s  s i m i l a r  t o  t h e  s p e c t r u m  o f  T iA I N  [202] e x c e p t  f o r  t h e  

p r e s e n c e  o f  V 2 O 5  in  t h e  600-800 c m '1 b a n d  [201]. T h e  s u b s e q u e n t  b r o a d  p e a k  in  

b e t w e e n  800 a n d  1 0 0 0  c m '1 c a n  b e  a s s i g n e d  t o  t h e  p r e s e n c e  o f  h i g h l y  c r y s t a l l i n e  a- 

A I2 O 3  [201] o r  a t t r i b u t e d  to  A I V O 4  p h a s e .  T h e r e  a r e  tw o  p o s s i b l e  m e c h a n i s m s  f o r  t h e  

f o r m a t i o n  o f  t h e  A IV O 4  p h a s e .  T h e  m i x e d  o x i d e  c a n  b e  p r o d u c e d  v i a  t r i b o - o x i d a t i o n  

m e c h a n i s m  o r  c o u l d  f o r m  d u e  to  r e a c t i o n  b e t w e e n  t h e  V 2 O 5  in  t h e  w e a r  d e b r i s  a n d  t h e  

w e a r  p r o d u c t  f r o m  th e  a l u m i n a  c o u n t e r p a r t  (A I2 O 3  b a l l )  a s  r e p o r t e d  i n  [203]. T h e  h i g h l y  

d i f f u s e d  p e a k s  c o r r e s p o n d i n g  to  t h e  d i s o r d e r e d  a n d  g r a p h i t i c  c a r b o n  b a n d  w e r e  a l s o  

d e t e c t e d  i n  t h e  1200-1600 c m '1 b a n d .

These observations lead to the conclusion that at low temperatures up to 200°C the wear 

product contains debris of the as-deposited coating as well as V based oxides formed 

due to high flash temperatures at the asperity contacts during sliding. This is in good 

agreement with the TG experiments where first effect of oxidation is observed at 550°C.

At 450°C the oxide formation is influenced not only by tribo-oxidation but also 

due to the external heating of the sample. The peaks of the spectra are with higher 

intensity and depict the presence of V 2 O 5  phase in the 200-to-600 cm’1 band and TiC>2, 

V 2 O 5 ,  and A I V O 4  in the 600 to 1000 cm’1 band [204]. It is also important to notice that 

the amorphous carbon D and G bands in between 1321 cm ' 1 and 1579 cm ' 1 have shown 

more intensity.

At 650°C the peaks in the 200-700 cm' 1 band appear with higher intensity 

showing the formation of a mixture of several oxides such as a -F2O3, V2O5, and TiC>2. 

This spectral range have also shown significant amount of V-containing Aluminium 

oxide phase, most probably AIVO4 as identified by XRD analyses. The (X-F2O3 is
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contributed by wear debris of the substrate material. More interestingly a graphitic peak 

was identified in between 1300-1400 cm" 1 corresponding to the D band of disordered 

graphite.

^  Disordered carbon

Graphitic carbon

40000

20000 #

Ambient

200 400 1200 1400 1600 1800

Rainan shift (cm 1)

Figure 4.29 Raman spectra of the wear debris generated at ambient, 200°, 450° and 

650°C in the wear track during pin-on-disk test.

4.6 Machining performance of TiAlCN/VCN coating deposited by 

combined HIPIMS-UBM technique

To study the wear behaviour of TiAICN/VCN as well as coating work-piece 

material interaction a cutting experiment was conducted. Coated 25 mm diameter end 

mills were used to machine highly abrasive AlSi9Cul alloy in dry conditions. The tests 

were carried out on a high-speed milling centre, MAZAK FJV-25 using milling 

parameters which were specifically set to produce significant amount of built up 

material on the cutting edge and therefore guarantee complete material reaction between 

coating and work piece can be realised: spindle speed; 24000 rpm; cutting speed, 

Vc=1884 m. min"1; cutting depth, Ap=4 mm; cutting width, Ae = 2 mm; feed rate, Vf = 

0.165 mm per tooth (0.33 mm rev"1). Optical image of the cutting edge with the built up
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Al-alloy on the cutting edge is shown in Figure 10 (a) UBM deposited coated tool (b) 

HIPIMS-UBM deposited coated tool. This built up material was than mechanically 

removed from the tool and the contact surface was used for Raman analyses.

X

(a) (b)

Figure 4.30 Optical image of cutting edge with the built up Al-alloy on the cutting edge 

(a & b) UBM and HIPIMS-UBM deposited TiAICN/VCN.

In Figure 4.30 the TiAICN/VCN coated cutters by UBM and HIPIMS UBM technique 

have shown almost similar wear rate. However, longer lifetime for UBM deposited 

cutter can be seen when compared to HIPIMS-UBM deposited coating, which was 

attributed due to the much thicker coating deposited in the former case (~ 3.5 pm) when 

compared with the latter case (~ 2.5 pm). However, it is very important to notice that 

the HIPIMS-UBM deposited cutter exhibit more stability during the wear performance 

with slow increase in the flank wear rate with cutting length over 500 m (0.486 m in 

each cutting pass). This can be seen by sudden increase in the flank wear in the case of 

UBM deposited cutter. Also, the lower surface roughness value measured in the case of 

HIPIMS-UBM deposited cutter (0.023) when compared to UBM deposited cutter 

(0.026) prior to the machining process has lead to form reduced BUE formation after 

cutting operation. This can be clearly seen in Figure 4.30a. The surface finish after the 

machining operation for HIPIMS-UBM deposited cutter was better than UBM 

deposited cutter.

GNH 1 1480 passes 
0.24mm Flank Wear
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Figure 4.31 Flank wear of coated HSS tools plotted against cutting length 

in milling A17010 alloy.

4.6.1 Raman spectroscopy investigation of the worn tool-work piece material 

surface

(A) Analysis of tool cutter coated with TiAICN/VCN by UBM and HIPIMS-UBM 

technique

Green (532nm excitation) and UV (325 nm excitation) Raman spectroscopy was 

employed to identify the coating phases and compounds formed on the cutting edge 

before and after the machining test as well as on the contact surface of the as-removed 

from the cutting edge built up material, Figure 4.32a and 4.32b. However, in the case of 

HIPIMS-UBM deposited tool edge the build-up edge is less pronounced when 

compared to UBM deposited tool edge (see Figure 4.23). Hence, in this case, it was 

possible only to collect the Raman spectra from the tool edge.

As deposited coating: Both Green and UV excitations of the as-deposited coating 

revealed the presence of TiAlCN and VCN as expected. However the more sensitive to 

carbon UV analysis showed, lower intensity peaks at 1568 cm ' 1 (G-band) and 1351cm'1
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(D-band) revealing the graphitic nature of the coating material which supports the 

GAXRD and XTEM analyses.

Coating surface after machining: Green laser Raman spectroscopy identified the 

presence of various oxides such as Si0 2 , mixed (AlSi) O, V2 O5 as well as the G and D 

bands of graphitic carbon. The graphitic G and D bands at 1372 cm ’ 1 and 1605 cm ’ 1 

respectively were much more intensive in the UV 325nm spectra. In case of HIPIMS- 

UBM deposited case, Figure 4.33 shows the Raman spectra collected from the coated 

tool edge after immediately after the successive interval of operation. The high intensity 

graphitic peak of G and D peaks are clearly observed at 1375 cm ' 1 and 1607 cm ' 1 

throughout the dry milling operation.

Contact surface: The compounds found on the contact surface of the built up SiAl-alloy 

were similar to those found on the tool surface after the machining test namely 

lubricious V2O5, abrasive SiCF and mixed (AlSi) O, as well as graphitic carbon.
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Figure 4.32 Raman spectra taken from various surfaces using: a) UV, 325 excitation and 

b) green laser 532 excitation.
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Figure 4.33 The Raman spectra collected from the machined tool edge after successive interval 
of operation.
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CHAPTER 5

DISCUSSION

5.1 HIPIMS and UBM plasma-a comparison in terms of ionic composition

5.1.1 V+ + Ar+ ion etching by HIPIMS

Surface pretreatment by HIPIMS prior to the deposition of actual coating, is

proven to be an effective method to enhance adhesion of the coating with substrate.

Metal ion etching by physical sputtering is most commonly used to remove oxide and

carbon contaminate from the substrate surface in order to avoid possible formation of

nanocrystalline or amorphous structure at the coating-substrate interface. This is very

important since nanocrystalline or amorphous structure create a very poor bonding with

the condensing nuclei of the coating material. Hence, it is very essential to provide

crystalline interface which create strong adhesive bond between subsequently deposited

coatings. In this work, the substrates were pretreated by V+ + Ar+ ions, by HIPIMS.

Time averaged ionic composition during this stage of the process has shown high metal-

to-gas ion ratio as expected by HIPIMS. The results of energy resolved mass

spectrometry was discussed in the chapter 4, in section 4.1.

The spectrum clearly showed (Figure 4.1 and 4.2) the HIPIMS plasma discharge

dominated with higher content of metal ions (V1+, V2+, V3) compared to gas ions (Ar1+,

Ar2+) with a ratio of 1.25:1 respectively. In contrast, for UBM sputtering, earlier studies

have reported about very lower proportion of metal ionisation as compared to gas

ionisation during etching. For example UBM of Cr discharge has shown metal-to-gas

ion ratio of 0.1 [205]. Careful analysis of the spectra has shown ionisation of V up to

charge state of 5 (V4+, V5+). It is also interesting that metal-ion-to gas ion ratio for 2+,

3+, 4+ and 5+ are higher than 1+. This may be due to the lower ionisation potential of

multiply charged metal ions as compared to multiply charged gas ions (Ar1+, Ar2+). The

energy distribution of single, double and triple charged ions were shown in figure 4.3.

The average energy of all the ions was in the range of 1 -2 eV.

Previously, Arc discharge of Ti has shown multiply charged ions with low gas

ion percentage [206]. In the recent work, Ehiasarian et. al., have also shown similar

results of high metal-to-gas ion ratio for Nb and Cr ions discharged during etching

process by HIPIMS, prior to the deposition of CrN coating [205]. An analogy can also
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be seen in this case in terms of mass spectrometry result, where multiply charged ions 

were identified which effectively increased the metal ion ratio in the HIPIMS plasma 

when compared to the gas ion ration (see section 4.1). The high percentage of metal 

ionisation achieved during the Arc and HIPIMS etching have proved to create a strong 

bonding between the nitride coating and the substrate [205, 206]. However, the 

elimination of growth defects in the actual coating (often seen after Arc etching 

processes) [46], after HIPIMS pretreatment technique has increased the importance of 

this technique in metal ion etching process.

Two possible competitive mechanisms which occur at the substrate surface 

during metal ion etching process are sputtering of substrate atoms and diffusion of 

bombarding metal ions beneath the substrate surface [166]. These newly implanted 

atoms have clear tendency to form very strong bond with the substrate lattice as well as 

create fully dense crystalline surface which subsequently assist in coherent growth of 

coating [205]. For example HIPIMS of V pretreatment on stainless steel substrate with 

subsequent Tio.5Alo.5No.5 base layer and HIPIMS of Cr pretreatement on the y-TiAl 

substrate and subsequent CrAIN layer grown have shown clear crystallographic 

templating by cube-on-cube epitaxial growth with contaminant free coating-substrate 

interface [205]. High Energy ion bombardment is an efficient alternative method to 

temperature controlled thin film growth mechanism, which promotes effective diffusion 

of bombarding ions in to the growing film [207]. The implantation depth of bombarding 

atoms depends upon the energy it gains near the biased substrate sheath. For e.g 

implantation depth of singly ionised atoms at 600-1000 eV energies reported in 

previous literatures have implanted beneath the substrate surface to about 5-8 nm depth. 

This fact clearly suggests that the implantation depth is directly controlled by the energy 

of implanting ions. Hence, in this work also, the content of highly ionised states of V 

increases the depth of implantation of metals into the substrate since the energy that 

ions gain through biasing is multiplied by their charge state. Since, the energy of the 

bombarding ions are determined by the product of the substrate bias voltage (-1000 V in 

our case) and the charge state of the sputtered ion. Subsequently these highly charged 

metal ions energised near the substrate sheath and can have very high range of energy. 

This is believed to be leading to implantation of these high energy ions deeper (5-10 

nm) into the substrate ensuring a thicker and stronger diffusion layer. This mechanism 

was referred to as the radiation enhanced diffusion [18] where the possible inclusion of 

inert gas ion is completely reduced and provides atomically clean surface for adatoms to 

create bond with substrate lattice.
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Thus mass spectrometry results obtained here clearly suggest that the 

mechanism behind the TiAlCN/VCN coating-substrate bonding is analogous to 

previously explained nitride coating bonding with the substrates [205]. High content of 

multiply charged V+ ions create clean interface prior to the growth of TiAlCN/VCN 

nanograins. This subsequently forms highly crystalline coating-substrate interfaces and 

increase the likelihood of atomic registry between coating and substrate lattices. This 

was confirmed by high adhesion value (> 50 N) obtained for TiAlCN/VCN coating 

against the substrate and the low magnification TEM cross section images of the coating 

(discussed in section 5.2). Also, the impact of high adhesion achieved has been 

advantageous in several aspects, such as increase of microhardness of the coating, better 

adhesive wear performance of TiAlCN/VCN coating both at room temperature and 

elevated temperature. This has been discussed in detail in the section 5.2.

5.1.2 Plasma composition during the deposition of TiAlCN/VCN coating

Table 5.1 shows the amount of Me+, C+ and Ar++N+ ions observed during the 

deposition of TiAlCN and VCN respectively. The plasma composition during coating 

deposition was studied by operating TiAl and V targets separately in HIPIMS and UBM 

(DC) modes, the influence of high energy bombardment during HIPIMS was clearly 

reflected in the microstructure of TiAlCN/VCN coating (will be discussed in section

5.2). Figure 4.4 shows the mass spectra collected near the substrate during the 

deposition of TiAlCN and VCN as separate process by both HIPIMS and UBM 

technique. The pie-chart (Figure 4.5a and b) drawn from the mass spectra for HIPIMS 

and UBM plasma has clearly shown major difference with metal-to-gas ion ratio when 

compared to UBM plasma. Achieving higher number of metal ions in the condensing 

plasma flux has been a major advantage as far as both energy delivery to the growing 

film and increase in the mobility of condensing atoms are concerned. Besides this high 

ion irradiation of ions are also results in stress free coatings which inhibits cracking or 

flaking problems.
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UBM Plasma HIPIMS Plasma

TiAlCN VCN TiAlCN VCN
Metal Ion 

( % )
2.8 7.5 11 7.5

C  Ion
(%) 0.1 0.1 1 0.5

Gas Ion
( % )

97 99.2 88 91.7

Table 5.1 Ionic composition of plasma measured during the deposition of 
TiAlCN/VCN nanoscale coatings by UBM and HIPIMS technique.

During the deposition processes of both TiAlCN and VCN, the ratio of metal 

ions -to-gas ions during the sputtering of HIPIMS mode were 1:7 and 1:12 for TiAlCN 

and VCN discharge respectively. This value is greater than the ratio of metal ion-to-gas 

ion concentration produced in UBM discharge which is about 1:32 for TiAlCN and 

1:177 for VCN. In the case of HIPIMS discharge, the estimated metal ionisation degree 

was about ~ 20 % (Al1+=9%, Ti1+=2%, V1+= 7.5%), where as a factor of 2 lower metal 

ionisation ~ 10 % (Al1+= 2.8%, Ti1+= 0.23%, V1+= 0.5%) was calculated for UBMS 

discharge. In addition, C1+ ion percentage detected was higher in the case of HIPIMS 

(1.5%) discharge than UBMS discharge (0.2%). Also, mass spectra of HIPIMS 

discharge has clearly identified the higher proportion of ionised stable hydrocarbons and 

nitril compounds than identified in case of UBMS discharge.

The results obtained about gaseous ion species in the discharge are consistent 

with published experimental results and chemical models performed on similar plasmas 

[208, 209, 210]. The higher metal ionisation of pulse sputtered flux achieved in HIPIMS 

discharge can be attributed to the high plasma density achieved ( 1 0 12 cm'3) due to high 

power density applied on the TiAl and V targets. Ehiasarian et. al., showed the 

influence of high power density on the composition of pulsed magnetron plasma of Cr 

and Ti discharge [211]. Author suggests that the high power dissipation on the target
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increases target voltage and target current, which increases in turn the plasma electron 

temperature in the plasma with high plasma density near the target. This argument 

further corroborate the mass spectrometry results obtained for HIPIMS discharge from 

TiAl and V target in mixed Ar+N2+CH4 plasma.

During the deposition step, high current densities applied in pulses are believed 

to stimulate several processes inside the active plasma, such as electron impact 

excitation of metastable N2*, excitation of atomic nitrogen, and the formation of free 

radicals [208], which are efficient to decompose methane ( C H 4 )  into several gaseous 

ions of hydrocarbons, and nitrils [209, 210, 212]. The high frequency of electron 

impacts generating positive C x H y 1 +  ions in the Ar+N2+CH4 plasma also produces stable 

free carbon ions of C1+ [212]. In HIPIMS the latter process is much more efficient as 

compared to UBM.

The higher metal and carbon ion fractions detected during the HIPIMS 

deposition of TiAlCN/VCN coating has very important impact on its growth. The 

Energy-resolved mass spectroscopy analyses of the plasma indicate that during the 

HIPIMS stage of deposition, the coating grow under conditions of higher energetic 

bombardment. High energy bombardment due to the metal ion dominated plasma flux is 

proven to transfer both energy and momentum to condensing adatoms, which increases 

adatom mobility on the substrate. This would unambiguously densify the microstructure 

with high mobility of dissociated reactive N+ and CxHy1+ ions in the film by reducing 

inter columnar porosity. Furthermore it can promote layer-by-layer growth and reduce 

the roughness of the coatings.

High amounts of free carbon produced in the HIPIMS plasma itself tend to 

enhance the incorporation of carbon in the actual film. In contrast CxHy molecules and 

radicals have lower sticking coefficients and/or may require additional energy to 

dissociate on the surface. Carbon incorporated in the film, segregates vertically to form 

layers between the individual layers of the coating [212, 213]. Thus, the segregation of 

carbon atoms between the individual layers of TiAIN and VN might also reduce the 

interfacial stress which is beneficial in terms of good adhesion and mechanical stability. 

Also, more number of carbon ion bombardment achieved in HIPIMS might also 

increase the sp content inside the film, which has beneficial impact on the friction 

behaviour during the dry sliding conditions. Apart from its application oriented benefits, 

higher fraction of carbon ion detection in HIPIMS plasma also might lead to target 

poisoning effect, which could also show unique impact on the microstructure of the 

coating.
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In summary, the novel HIPIMS technology offers better plasma conditions with 

higher ionisation and higher Me+ to Ar+ ratio for pre-treatment conditions: highly

charged V metal ions - up to 4+ and metal ion -to- gas ion ratio >1 and for deposition 

conditions: factor 10 more carbon ions - fully stripped of hydrogen, factor 3 more A1 

ions and factor 10 more Ti ions when compared to UBM sputtering.

5.2 Mechanical and Tribological Properties of nanoscale TiAlCN/VCN coating

5.2.1 Mechanical properties determined for UBM and HIPIMS-UBM deposited
coating

In this section, initially the mechanical and tribological properties are 

comparatively discussed for UBM and HIPIMS-UBM and in the following section the 

discussion is carried out for pure HIPIMS deposited case. The purpose of TiAlCN/VCN 

nanoscale coating is developed as a wear resistant coating for elevated temperature 

applications. Especially to protect the tools used for machining aerospace grade alloys 

such as Ti, A1 and Ni based alloys. Hence the mechanical and tribological properties of 

nanoscale TiAlCN/VCN coating is not been discussed beyond the scope of its purpose.

Irrespective of deposition technique, high but similar critical load values in 

scratch adhesion tests of Lc = 57 N were measured for TiAlCN/VCN coating, as the 

surface pre-treatment was carried out by HIPIMS discharge using similar deposition 

parameters. The only possible mechanism by which formation of weak van-der-Walls 

bonding between the coating and substrate surface can be eliminated is achieving good 

adhesion at the substrate-coating interface. The high adhesion value measured for 

TiAlCN/VCN coating has demonstrated again the importance of metal ion (V+) etching 

by HIPIMS. This adhesion value is higher than those for arc-pretreated TiAlCrYN (Lc ~ 

50) and Ar+ pretreated DLC (Lc ~ 30) grade coatings reported in previous literatures 

[12]. Thus the high adhesion value achieved is a prerequisite for any defect free coating 

growth. In the case of wear resistant coatings, adhesion plays a very important role in 

retaining the integrity of the coating with the substrate where the protection of substrate 

against adhesive and fatigue wear is essential. Especially for TiAlCN/V CN multilayer 

coating, good adhesion is essential in order to increase the tool life time at when used at 

elevated temperatures (400 °C -  800 °C).
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The advantage of HIPIMS etching can also be realised in terms of the coating 

surface roughness (Ra). The lower surface roughness measured (Table 4.1) for 

TiAlCN/VCN coating has shown factor 3 lower values than previously reported for arc 

etched TiAlCrYN (~ 0.075) and carbon free TiAlN/VN (~ 0.06) coating [12]. This can 

be attributed to the droplet-free metal ion etching characteristic of HIPIMS utilized for 

surface pre-treatment. Further, more intense ion bombardment which produces higher 

re-sputtering of the coating as well as coating densification during growth could explain 

the lower surface roughness of the HIPIMS deposited coatings as compared to the UBM 

ones (Table 4.1). Both coatings however, show almost a factor of 3 lower surface 

roughnesses when compared to magnetron sputtered TiAlCN/VCN coatings where arc 

etching was used prior to the coating deposition step. This could be due to the denser 

microstructure produced by HIPIMS, where the concentration of metal ion sputtering 

was higher as compared to UBM, during the coating growth. As far as tool protective 

coatings are concerned, smooth surface finishing plays a major role which amounts to 

longer tool life time during machining. Microhardness value was marginally different 

with higher values measured for the (HIPIMS-UBM) case. The increase can be 

attributed to the higher coating density due to the higher level of ion bombardment as 

explained in plasma analysis (section 5.1). The higher the microhardness value of the 

coating, better it controls the abrasive resistance at cutting temperature. Although by 

adding the C to TiAlN/VN has reduced the microhardness value from 3200 to 2900, the 

value is sufficiently high enough and comparable to previously reported DLC 

(Cr/WC/a-CH) coating [12]. Previously reported plastic hardness (HP) values for 

carbon free multilayer coatings such as TiAlN/VN (~ 40), TiAlN/CrN (~ 55), 

TiAlN/ZrN (~ 55) were realised to be higher than TiAlCN/VCN multilayer coating. The 

higher plastic hardness values were corresponding to the higher residual stress measured 

for those coatings which were attributed to the intensive ion bombardment during the 

coating growth where Arcbond sputtering was the technology used for their deposition 

[177]. However, a factor of 2-to-4 lower HP values measured for TiAlCN/VCN coating 

is conclusively suggests the importance of light atomic weight carbon inside the coating 

and utilization of HIPIMS technology for its deposition. Lower plastic hardness values 

are important to achieve in wear resistant coatings used to machine sticky alloys (Ti, Al, 

Ni based alloys); as smooth plastic deformation between individual de-laminating 

atomic layers further helps to stabilize the wear behaviour of the coating against work 

piece.
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Hence, the values measured for adhesion, microhardness, surface roughness, and 

plastic hardness for nanoscale TiAlCN/VCN coating, shows superior results when 

HIPIMS was used not only for etching, but also during the deposition. Hence without 

any surprise the HIPIMS technology outranks those traditional arc and UBM 

technologies used to deposit nitride multilayer coatings.

5.2.2. Room temperature friction and wear behaviour for UBM and HIPIMS- 

UBM deposition case

The mechanical and tribological properties of nanoscale TiAlCN/VCN coating 

at room temperature are summarised in Table 4.1 as a function of deposition technique.

The plastic hardness of the coating demonstrated that the addition of carbon to 

TiAlN/VN clearly distinguish the TiAlCN/VCN coating as “hard” coating rather 

classifying it to “Superhard” family. However, the coating deposited under pure 

HIPIMS technique with similar deposition conditions as that of UBM and HIPIMS- 

UBM has shown comparatively lower plastic hardness. In the case of pure HIPIMS 

deposited coating, the carbon percentage was higher as confirmed by the plasma 

analysis. Further, the TEM analysis have showed the transition of microstructure from 

nanocrystalline multilayer phase of TiAlCN and VCN to nanocomposite phase of 

Ti,Al,V(C-N)/a-C (figure 4.20), clearly demonstrate the reason for decrease in hardness 

value of the coating ( -1 3  GPa), than observed for UBM and HIPIMS-UBM deposited 

case (-29 and 25 GPa respectively). Hence, the discussion in this section is limited to 

only for UBM and HIPIMS-UBM deposited coating.

The room temperature friction and wear coefficient value for TiAlCN/VCN 

coating deposited is given in Table 4.1 as a function of deposition technique used. The 

wear coefficient values are correlated to the values of friction coefficient measured 

against the AI2O3 counterpart. Low friction coefficient (COF) of p=0.45 with wear 

coefficient of 1.4xl0 ' 17 n ^ N 'W 1 was calculated for coating deposited by HIPIMS- 

UBM, which is two orders of magnitude lower than that for the UBM deposited 4.2x10' 

15 m3N'1m' 1 coatings with slightly higher COF of p=0.68. This represents significant 

advantage of coatings deposited by (HIPIMS-UBM). Thus low friction and enhanced 

wear resistance measured in dry sliding wear conditions for HIPIMS-UBM deposited 

TiAlCN/VCN coating can be described in terms of its micro structure and chemical 

constituents. The extremely dense closed columnar multilayer structure observed for
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TiAlCN/VCN coating produced by HIPIMS-UBM deposited technique significantly 

demonstrates its importance by enhanced friction and wear behaviour at room 

temperature. Further, the influence of chemical constituents, especially the synergy 

between V and C played a very important role in stabilizing the friction and wear 

performance of the coating. The importance of vanadium and carbon for low friction 

and wear resistant application was realised since two decades. For example 

monolithically grown Ti-Al-V-C-N [214], VTi (C,N) [215], (TiAlV) CNO + V20 5 top 

layer [216], AlCrV(CN) [217], etc. But the major problems with these coatings were 

concerned with rough surfaces which have lead to poor surface finishing problems due 

to arc deposition technology utilised for the respective deposition.

The concept of solid lubricants and its importance in dry milling applications, 

biomedical applications etc, is constantly increasing. The lubricious effects of solid 

lubricants also named as Magneli phase oxides such as Tin0 2 n-i, Vn0 2 n-i, Vn0 3 n-i or 

Vn0 3 n- 2 is explained by the presence of easy shearable crystallographic (CS) planes 

[234, 235]. XRD analyses reported previously for TiAlN/VN coatings showed the 

formation of a range of oxides such as T i02, V2O5 mixed with AIVO4 all possessing 

lubricious properties due to their crystallographic structure [232, 233]. Also, the melting 

point of V2O5 is low (Tm = 685° C), and typically in the range as that of flash 

temperature (Tf = 650° -  700 °C) at the asperity contacts during sliding. This means that 

the dry sliding will takes place over the molten phase of tribo oxide phases. The mixed 

oxide can be produced via tribo-oxidation mechanism or could form due to reaction 

between the V2O5 in the wear debris and the wear product from the alumina counterpart 

(AI2O3 ball) as reported in [203]. This was confirmed by Raman spectra undertaken on 

the as-formed wear debris accumulated along the side of the wear track in the pin-on- 

disc test studies have identified the generation of highly lubricious phases such as 

(V2O5, T i02, AIVO4) during sliding at room, thus providing additional tool for better 

understanding of tribological behaviour of TiAlCN/VCN coating deposited by HIPIMS- 

UBM technique. Hence, the lower COF of 0.45 for HIPIMS-UBM deposited coating 

can be due to the wear stabilizing behaviour of tribo-oxidised films containing all easily 

shearable planes. Additionally in the case of the TiAlCN/VCN multilayer coatings the 

presence of a carbon based phase between the individual layers of the nanolaminate 

further influences the wear behaviour by introducing layer by layer wear mechanism as 

reported previously. Raman spectra collected after room temperature sliding experiment 

from the wear debris formed at the wear track edges showed clearly the possibility of
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graphitization process where the possible contribution for friction reduction from 

graphitic layer structure is enhanced (Figure 4.29).

The plastic hardness of the coating also plays a major role in the wear resistance 

property of the coating. Carbon free multilayer nitride coatings For example, 

TiAlN/VN, TiAlYN/VN, TiAlN/CrN, have shown increasing wear coefficient as their 

plastic hardness value increased [237]. This conclusion can also be extended here, 

where TiAlCN/VCN has shown lower plastic hardness value (~ 30 GPa for UBM, (< 30 

GPa for HIPIMS-UBM and pure HIPIMS deposited) than carbon free nitride multilayer 

coatings. As a consequence, decrease in the wear coefficient value is observed. Table

5.2 below compares the wear coefficient value with respect to plastic hardness value. 

Earlier reports on the effect of carbon incorporation into the TiN film clearly revealed 

the fact of decrease in its hardness value due to the increase in the content of carbon in 

the film [119]. This was attributed to the increase in a-C phase with the transition from 

nanocrystalline phase of nc-Ti(C, N) to nanocomposite of nc-Ti(C, Nx<i)/a-C film. 

However, it is very important to notice here that, for HIPIMS-UBM deposited case, 

there is no change is the microstructure of the coating has been observed due to the 

incorporation of carbon. Also, It was proposed that the amount of these oxides 

predominantly influence in the reduction of COF due to melting at flash temperature 

due to which formation of junction formation mechanism is very much suppressed by 

these molten oxide phases. Also, during sliding the tangential friction force exerted on 

the coating surface leads to plastic deformation. Due to this, the columnar structure is 

expected to break by producing micrometer size particles, which influence three body 

abrasive wear mechanism [236]. This mechanism might increase the friction and wear. 

However, enhanced adhesion of the coating with substrate, higher microhardness and 

denser microstructure has clearly increased the wear resistance of HIPIMS-UBM 

deposited coating against the abrasive wear. Further, the as formed solid lubricant 

oxides at the tribo contacts together with the influence of carbon have stabilized the 

friction behaviour of the coating. This can be realised by observing smooth wear track 

generated after the room temperature pin-on-disc experiment (Figure 4.8a). The SEM 

morphology of room temperature wear track was further helpful in understanding the 

wear behaviour of HIPIMS-UBM deposited TiAlCN/VCN coating. The formation of 

shallow grooves parallel to the sliding direction clearly indicated in Figure 4.28a. by 

high energy bombardment and synergy between above mentioned Magneli oxide phases 

which acts like dry solid lubricants and high amount of carbon phase between the
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individual layers of the nanolaminate further influences the wear and friction behaviour 

by introducing layer by layer wear mechanism as reported previously [213]. This can be 

associated to the layer by layer removal of the coating during the sliding action, as well 

as to the relatively high humidity 75% as described in the previously published wear 

studies of coatings utilising nanoscale multilayer structure [238, 239].

Multilayer nitride 

coating

H

(GPa)

COF

(P)

Wear coefficient 

(m3/Nm)

TiAlYN/VN 78 0.65 4.5 x 10'lb [Ref:237]

TiAlN/CrN 55 0.7 2.4 x 10' 16 [Ref:237]

TiAlN/VN 40 0.4 1.3 x 10' 17 [Ref:237]

TiAlCN/VCN 30 0.4 1.4 x 10‘17

Table 5.2. Wear coefficient values of carbon free nitride multilayer coating with respect 

to their plastic hardness value; compared to carbon containing TiAlCN/VCN coating.

5.2.3 Room temperature friction and wear behaviour for pure HIPIMS deposited 
case

The discussion in the previous section being carried out on the tribological

performance of TiAlCN/VCN coating which was deposited with HIPIMS-UBM

technique because of its superior performance over UBM deposited coating. In this

section the tribological behaviour of pure HIPIMS deposited TiAlCN/VCN coating is

discussed, due to the unique microstructure observed in this particular deposition.

Besides the influence of Magneli phase oxides and carbon, the room temperature

friction and wear behaviour in this case was strongly correlated to the unique graded

microstructure achieved in this case, as explained in the section 4.4.2 and 5.2.3. The

microstructure is evolved in three stages. The figure 5.1 shows the low magnification

cross sectional bright field TEM image of TiAlCN/VCN coating deposited by pure
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HIPIMS technique. Adjacent to the base layer, usual multilayer structure with carbon 

atoms segregated at the interface can be observed. This toughest region was found to be 

about 10-15 nm thick and provide highest load bearing capacity to the coating. 

Subsequently, after this structure has evolved as nanocomposite structure with 

TiAlVCN grains surrounded by carbon tissue phase. Nanocomposite structures are 

known to improve wear resistant property of the coating. And the final top zone of the 

coating is where the microstructure appeared completely amorphous without grain 

boundaries. This amorphous phase of the coating has revealed the Me-C like structure 

which can be helpful in increasing the onset of oxidation.

nc-TiAlVCN

Me-C amorphous structure

Figure 5.1. Low magnification bright field TEM micrograph of pure HIPIMS deposited 

TiAlCN/VCN coating; showing graded microstructure of multilayer-nanocomposite- 

MeC.

Hence, the tribological behaviour for TiAlCN/VCN coating in this particular case was 

determined by the depth profiling the friction and wear behaviour of the HIPIMS
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deposited TiAlCN/VCN coatings a number of friction tests were carried out with 

stepwise increase of the sliding distance by changing the number of the sliding laps 

from 500 to 10000 with an increment of 1000 laps. Coefficient of friction values of 

jx=0.37 (Figure 4.9) as measured in the first friction zone at the top of the coating are 

typical for Me-DLC coatings which corresponds well to the Me-C phase and XRD 

amorphous structure of the coating in this area. Low friction in this stage is achieved 

due to the C, which acts as a solid lubricant. This COF value is in well agreement with 

previously reported values for Me-DLC type (C/Cr) structure deposited with magnetron 

sputtering technique [225]. Recently, researchers are trying to include crystalline phase 

into the DLC phase, which has promised to show better tribological properties in terms 

of low friction and wear resistance properties. In this direction C/W and C/Cr have 

emerged as better examples, which have demonstrated better tribological properties 

when tested under dry sliding conditions [240, 241]. Similar microstructure morphology 

can also be seen very clearly in our case, where Ti-Al-V-N grains are surrounded by 

carbon tissue phase, see figure 5.1.

Further, when the sliding distance/wear depth is increased the nanocomposite 

structure of the coating is reached which characterises with higher coefficient of friction 

compared to the C-rich top layers and enhanced wear resistance, which is expected 

when accounting for the higher hardness of the nancrystalline structures. In this region 

the friction and wear behaviour are determined by the interplay between two 

mechanisms the presence of C acting as solid lubricant and formation of highly 

lubricious V 2 O 5  Magneli phases. In this experiment it was found that the wear 

coefficient reduces by one order of magnitude with the wear depth, with initial value of 

IQ = 3.8 x 10' 15 m3/N/m after 500 laps to IQ = 4.4 x 10' 16 m3/N/m after 10000 laps. 

These nanocomposite structures are known for better wear resistance properties, since 

their structure inhibit crack propagation through the bulk of the coating and increases 

the fracture toughness [242]. When this nanocomposite structure combined with self 

lubricating and/or chemically inert materials are produced, then tribological 

performance of the coating can expected to meet the desired requirement of low friction 

and better wear performance. Considering this argument we have a nanocomposite 

structure where self lubricating and chemically inert materials such as V and C is 

present; which is sufficient enough to show superior tribological performance both at 

room temperature and elevated temperature (discussed in next section). In comparison, 

UBM deposited TiAlCN/VCN coatings tested under similar conditions show an order of
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magnitude higher wear coefficient of 4.1 x 10' 15 m3/N/m [20] thus demonstrating the 

beneficial effect of the HIPIMS process. Another, reason for the reduced friction 

coefficient (COF) for HIPIMS involved deposition technique is corresponding to the 

formation of denser and smooth surface with increased ID/IG ratio and therefore the 

amount of sp bonded carbon inside the coating (Figure 4.16), as explained by the 

Raman spectra collected on as deposited coating. It is also very important to note the 

importance of HIPIMS technology in producing this special graded structure, 

constituting the toughest multilayer structure followed by nanocomposite and then on 

top, the Me-C amorphous structure, which is realized as a tribologicaly more 

advantageous for dry sliding and milling operations.

5.2.4 Friction and wear behaviour at elevated temperature

Figure 4.10 shows the coefficient of friction (p) vs number of laps curve for 

TiAlCN/VCN coating during sliding for elevated temperatures of 200°C, 450°C, and 

650°C. In table 4.2, the values of COF and wear coefficient is shown, which compares 

the tribological performance of TiAlCN/VCN coating as a function of deposition 

technology. No great changes in the friction behaviour of the coating have been 

observed as a function of deposition technique. It is believed that the friction is strongly 

influenced by the combined effect of tribo oxidation as well as surface oxidation 

process taking place at elevated temperature. The initial increase of the coefficient of 

friction at 200 °C (0.8) in all the three deposited case can be attributed to the removal of 

the condensed water vapour film from the sliding surface which has lubricious effect 

[232]. But this value was comparatively less to that of earlier reported COF value (~ 

1.0) at 200 -to- 300 °C for TiAlN/VN [245]. According to this report, the formation of 

dehydrated tribofilm and high shear strength at the interfaces of multilayer was main 

cause for higher COF.

The SEM morphology of worn surface analysed after the dry sliding test further 

lead to understand the friction and behaviour of the coating at respective test 

temperature. The fundamental difference in the properties of the film was observed by 

the rough surface of the wear track at 200°C, when compared to the wear tracks 

generated at other test temperatures (Figure 4.28a, b, c, d). The wear scar at 200°C 

appears to be rough with increased width of 338.43 pm, which can be explained by the 

increase of the coefficient of friction due to the sudden loss of water vapour, which 

takes place at this temperature range, see Fig.4.28b. In the absence of humidity
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lubricious oxides are expected to form only at the asperity contacts therefore their 

amount is not sufficient enough to provide effective solid lubrication. Further more in 

these conditions a brittle failure of the coating material at the asperities is promoted 

where the generated wear debris establish three body abrasion wear mechanism, which 

defines the morphology of the wear track.

Further increase of the temperature however leads to intensive surface oxidation 

produced by the combined action of the high temperature exposure to air as well as the 

sliding wear. The smooth wear track with parallel grooves showed after sliding wear 

test at 450 °C indicates the solid lubrication mechanism that occurred during the sliding 

process at this stage. According to the TG curve (will be discussed later), a larger 

amount of lubricious oxides is formed, which provide further proof of more effective 

solid lubrication resulting in smooth wear surface morphology. The smoothest wear 

track morphology is achieved at the highest test temperature of 650°C as at this stage 

due to the synergy effect of the tribo and external heating oxidation the largest amount 

of the lubricious oxides is generated, which promotes the polishing effect during 

sliding. This situation is also reflected by the coefficient of friction curve on Fig. 4.10 

where the coefficient of friction at 650°C is the lowest (0.4). This study shows that there 

is a clear link between the environmental conditions and the amount of the lubricious 

oxides generated during dry sliding and the friction and wear behaviour of the PVD 

coating.

However, very importantly, in case of pure HIPIMS deposited TiAlCN/VCN 

coating, Despite their low coefficient of friction the mechanical strength and therefore 

wear resistance of the oxide films is not very high which can be seen from the increase 

of the wear coefficient when compared to the room temperature wear conditions. 

Coating densification however reduces significantly the amount of the thermally grown 

oxides as revealed by the TG analyses, Figure 4.23 which explains the superior 

performance of the HIPIMS TiAlCN/VCN coatings, (Kc = 1.0 x 10' 13 m3/N/m ) over 

the UBM deposited ones (Kc = 5.8 x 10‘13 m3/N/m) when tested at 650 °C. 

Additionally, the Raman spectra collected from the worn surface generated at elevated 

temperature showed the influence of carbon, which further stabilized the friction and 

wear behaviour of the coating at elevated temperature.

In summary, the Raman spectra observations lead to the conclusion that at low 

temperatures up to 200°C the wear product contains debris of the as deposited coating
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as well as V based oxides formed due to high flash temperatures at the asperity contacts 

during sliding. This is in good agreement with the TG experiments where first effect of 

oxidation is observed at 550°C. Despite Magneli phase oxides, it is also important to 

notice that the amorphous carbon D and G bands in between 1321 cm ' 1 and 1579 cm ' 1 

have shown more intensity, which suggests graphitization process taking place during 

sliding at elevated temperatures of 450 °C and 650 °C. This suggests that the carbon 

phase has a clear contribution to the friction and wear behaviour of TiAlCN/VCN at 

elevated temperatures.

5.3 Microstructural analysis of TiAlCN/V CN coating -  Impact of HIPIMS

5.3.1 X-ray diffraction and SEM cross sectional analysis of nanoscale
TiAlCN/VCN deposited by UBM and HIPIMS-UBM technique

The crystalline structure of nanoscale TiAlCN/VCN coating was determined by 

Bragg-Brentano (0/20) X-ray diffraction analysis. Low angle X-ray diffraction was 

carried out in order to confirm the multilayer structure and calculate bi-layer thickness 

of as deposited coating. Further, SEM cross sectional study of as deposited coating was 

carried out in order to understand the influence of high energy bombardment on coating 

microstructure.

The low angle X-ray diffraction spectra (Figure 4.13) confirmed the multilayer 

nature of the TiAlCN/VCN coating deposited by both UBM and HIPIMS-UBM 

technique. The bi-layer period (A), of alternate TiAlCN and VCN was calculated to be ~

2.2 nm. The 0-20 XRD measurements (Figure 4.14) have shown the single phase fee 

NaCl structure, with preferred orientation of {111} and {220} for TiAlCN/VCN coating 

deposited by both UBM and HIPIMS-UBM technique. Many literatures in the past have 

demonstrated the influence of bias voltage applied during the coating deposition, ion 

bombardment and nature of atomic species on the texture of TiN-type coatings. For 

example, carbon free TiAlN/VN deposited at -75 V has shown preferred orientation 

along {110} direction with very strong {110} texture. Same coating when deposited 

between -85 V to -150 V [224], has shown {111} preferred orientation with preferred 

{111} texture. Similar effect of texture development has been observed for magnetron 

deposited TiAlN/CrN multilayer coating at similar conditions of bias voltage. The 

change is the texture from {1 1 0 ) to {1 1 1 } in both the cases were attributed to the fact of 

high mobility of lighter elements (Ti, A1 and V) caused due to increasing bias voltage
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from -75 V. Literature further reported that development of {110} texture in case of 

TiAlN/VN coating deposited at -75 V, is corresponding to the competitive columnar 

growth effect following the VN phase which develops along {110} direction when 

deposited at similar conditions [216, 217].

Recently XRD and pole figure analysis on the texture of nanoscale 

TiAlCN/VCN multilayer coating deposited by UBM technique at -  75 V has shown 

preferred orientation of {2 2 0 } plane with mixed fibre structure (perpendicular to the 

substrate plane) and in plane azimuthal texture along {220} and {111} [12]. Besides, 

Ar+, N2+ ion bombardment, the influence of milder bombardment of lighter elements 

such as CH+ ion was attributed to the mixed fibre and in plane azimuthal texture 

development. Further, author suggested that the effect of deposition geometry with off 

normal angle incidence of bombarding ions (due to 3-fold rotation of substrate) on the 

condensing surface was also contributed to the formation this mixed texture in case of 

TiAlCN/VCN coating.

In this particular work of nanoscale TiAlCN/VCN coating deposition, 

the deposition parameters such as bias voltage (-75 V) and gas pressure (x 10‘ mbar) 

were similar to that of previously carried deposition experiments by same research 

group [12]. Hence, the texture development of nanoscale TiAlCN/VCN coating 

deposited by UBM, HIPIMS-UBM technique is also believed to develop as mixed 

texture with preferred orientation along {220}, {111} as confirmed by 0/20 XRD 

measurements shown in figure 4.14. Also, the competitive growth of individual 

component layer with coherent interfaces is not affected for UBM deposited case. 

However, in the second case of the TiAlCN/VCN deposition when HIPIMS is involved 

along UBM (HIPIMS-UBM), the intensity of (220) is less pronounced and appeared 

broad than that of observed in pure UBM deposited TiAlCN/VCN coating. This 

suggests that the during the competitive growth of individual component layer, the 

influence of VN phase (which influence {220} texture) is slightly hindered due to the 

excessive high energy bombardment of C+ and CxHy+ ions by due to HIPIMS. Excessive 

stable hydrocarbon ion bombardment was confirmed by the HIPIMS plasma analysis 

explained in section 5.1. As a result of high energy bombardment, the ad-atom mobility 

of light elements (Ti, Al, V, CxHy+) also expected to increase. Hence the broad peak 

along {220} in HIPIMS-UBM deposited case can be attributed to the high proportion of 

free carbon atoms with its increased mobility on the condensing film are believed to 

occupy more nitrogen position of fcc-VN forming VCN phase.
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5.3.2 Raman Spectroscopy

The vibrational spectra of the as deposited TiAlCN/VCN coating was collected 

by 325 nm wavelength UV laser, which helped to understand the chemical state of the 

carbon. UV laser has the ability to excite both n and o states of electron clouds [224, 

2 2 1 ], hence helped to probe both sp2 and sp3 carbon phase fraction present inside 

TiAlCN/VCN coating deposited by all the three cases. The spectrum deconvoluted with 

a Lorentzian shape is shown Figure 4.16. The evidence for the D and G band was 

clearly observed in all the three cases of deposited coating, which confirms the both 

amorphous and nanocrystalline state of carbon (a-C) in TiAlCN/VCN coating. This is 

further confirmed through ID/IG ratio (sp2/sp3) calculated in all the three cases which is 

corresponding to the zone between nanocrystalline graphite and amorphous carbon 

according to “amorphization trajectory” model explained in [222]. Generally, the ratio 

of ID/IG ratio, full width half maximum (FWHM) and dispersion of G peak are three 

important parameters used to explain the bonding between the carbon and their 

structural disorder inside the film [223]. The FWHM of G peak is always corresponding 

to structural disorder, whereas dispersion of G peak is sensitive for topological disorder 

[223]. The structural disorder arises if distortion occurs between the bond angle or bond 

length between carbon atoms and size or shape distribution of sp2 clusters give raise to 

topological disorder [223].

In our case, the G peak position at 1582 cm ' 1 observed for UBM deposited 

coating gradually dispersed to lower wave number of 1578 cm ' 1 and 1575 cm ' 1 for 

HIPMS-UBM and HIPIMS deposited TiAlCN/VCN coating. This can be associated 

with increased sp2 clustering phase of carbon with minimal disorder in their bonding. 

Also, the D band position for HIPIMS deposited coating was found to be shifted to 

higher wave number (1381 cm'1) than those measured for UBM (1379 cm'1) and 

HIPIMS-UBM (1367 cm'1) deposited case. The shifting of D band to higher wave 

number side was associated with the increase of compressive stress inside the coating, 

especially when high energy bombardment conditions are involved during the 

deposition of thin films [243]. Tool protective coatings especially, should posses small 

amount of residual compressive stress, as they would help to delay the micro-crack 

initiation and propagation into the tool substrate [244]. Further, the ID/IG ration was 

increasing with respect to the deposition process. Pure HIPIMS deposited TiAlCN/VCN 

coating has revealed the ID/IG ration to about 1.64, which clearly suggests the
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significant increase in the sp3 content inside the film. This fact leads to realise the 

possibility of forming DLC bonding inside the coating. The sp3 bonding can occur only 

if the deposition involves high energy carbon ion bombardment during the growth. This 

has been clearly proved in our pure, where high amounts of free carbon produced in the 

HIPIMS plasma itself tend to enhance the incorporation of carbon in the actual film. As 

result of which, the reduction of COF (~ 0.3) when sliding against the top Xray 

amorphous zone of the coating was clearly observed.

5.3.3 SEM cross sectional analysis of nanoscale TiAlCN/V CN deposited by pure
UBM and HIPIMS-UBM technique

The influence of high energy bombardment of HIPIMS utilised during the 

deposition of TiAlCN/VCN has also been observed on the microstructure of the as 

deposited coating. Figure 5.1 shows the SEM cross sections which clearly demonstrate 

the structural evolution of nanoscale TiAlCN/VCN coating as a function of deposition 

technology. In all the three cases, columnar type of coating growth can be seen with 

significant microstructural difference for UBM deposited coating to that of HIPIMS 

involved processes (HIPIMS-UBM and pure HIPIMS). Since, all the deposition 

processes carried out with same deposition conditions, For example bias voltage was - 

75 V, pressure of gas mixture (Ar+N2+CH4) of about -4 .1  x 10' 3 mbar, target power on 

all the target was 8  kW, with three fold rotation given to substrates in all the three 

processes. Hence, the significant structural difference can be attributed to the chemistry 

of the reactively sputtered gas, especially the highly ionised state of reactive plasma 

achieved when HIPIMS was involved during the deposition, thus confirming the 

findings of energy resolved mass spectrometry.

In case of UBM deposited coating, the broken rock like, coarse columnar 

structure with horizontal terminated terrace like structure of UBM deposited 

TiAlCN/VCN coating (Figure 4.17a) indicate the weak interface bonding between the 

individual layers of the nanolaminated material. It can be speculated that this is due to 

the segregation of carbon at the interfaces between the individual nano-layers, which 

forms a lateral phase and therefore reduces the shear strength of these interfaces [213]. 

In contrast a very dense almost glassy cross section is observed for the HIPIMS-UBM 

deposited coatings, Fig 4.17b. It has been reported for CrN coatings deposited by 

HIPIMS [224] that the high ad-atom mobility of the condensing particles generated in 

the HIPIMS discharge leads to the growth of large diameter columns effectively
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reducing crack propagation in fracture sites in the material such as column boundaries. 

The absence of lateral fracture terraces demonstrates further the overall integrity of the 

TiAlCN/VCN coatings deposited by a process where HIPIMS is involved.

HIPIMS

HIPIMS-UBM

c o a t in g

Base layer region

Deposition technique

Figure 5.2 The Microstructural difference shown by SEM for nanoscale TiAlCN/VCN 

coating, as a function of deposition technique.

The paramount influence of high energy bombardment was observed in SEM 

cross-section of nanoscale TiAlCN/VCN coating when deposited by reactive pure 

HIPIMS process. It is very important to recall the fact that, during pure HIPIMS 

deposition, only two targets of TiAl and V were operated (as explained in Experimental 

part) with constant power applied on both. The careful observation of fractured cross- 

section SEM micrograph of TiAlCN/VCN coating deposited in this case reveals the 

columnar structure of the coating with three distinct zones (Figure 4.18a). The adjacent 

to the substrate carbon free dense TiAIN base layer ( ~ 60 nm wide first zone) with flat 

top columns, subsequently a narrow dark band like feature (~ 250 nm thick second
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zone). The columns are slightly wider on the top but no structural features associated 

with competitive growth mechanism can be clearly observed in third zone. Further, the 

intra-columnar structure (Figure 4.18b) is believed to be due to the effect of carbon and 

enhanced ion bombardment in the case of pure HIPIMS deposition on the coating 

growth mechanism. When compared this structural evolution to that of pure UBM and 

HIPIMS-UBM deposited TiAlCN/VCN coating, the major difference is the absence of 

the zone two (featureless dark band) for the coating produced by the later two processes. 

Further deep investigation of microstructure was elucidated by GAXRD and TEM cross 

sectional analysis of TiAlCN/VCN coating, which revealed the unique impact of 

HIPIMS during the deposition of this coating.

5.3.4 Glancing angle X-ray diffraction analysis of reactive pure HIPIMS
deposited TiAlCN/V CN coating

Glancing angle parallel beam geometry was used to determine the phase 

composition and structure of the coating as a function of the penetration depth in to the 

film. The depths of penetration which were averaged between 20 values of 20-110° and 

assuming intensity attenuation Me is shown in table 5.2 as a function of Glancing angle 

of incidence. The coating deposited in this case also shown single phase fee  structure 

and resolving individual reflections from the TiAlCN and VCN phases was not 

possible. The less intense peaks with broad shape (at GA of 1°, 2°; Figure 4.12) changes 

to sharper with higher intensity, as the X-ray diffracts from the films when measured at 

higher GA angles (5°, 10°). This observation further confirmed by the FWHM (table

5.2) calculation which helped to understand the three zones structure seen in SEM cross 

section. The GAXRD results suggests that the structure of the coating gradually changes 

with thickness from larger grain crystalline at the base to random orientation smaller 

grain nanocrystalline to almost X-ray amorphous structure on the top. In fact the 1° GA 

pattern is very similar to the previously discussed by the authors [225] patterns taken 

from Cr-C coatings where the carbon content exceeds 80% with respect to bias voltage, 

which sheds further light on the nature of the top 0.360 pm of the film.
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2.13
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5 1.78
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1.67

10 3.58 1.55

Table 5.2 Illustrates the diffraction o f X-ray with respect to  the film with respect depth and 

FWHM calculated for (111) peak as a function o f glancing angle o f incidence.

5.3.5 Microstructural evolution of nanostructured TiAICN/VCN coating -  TEM 
study

A. Reactive pure UBM and mixed HIPIMS-UBM deposited case

More detailed fine structure of nanoscale TiAlCN/VCN coating deposited in all 

the three cases were analysed by Transmission Electron Microscopy. In this section the 

difference between the microstructure of TiAlCN/VCN coating is clearly revealed as a 

function of deposition technique. Many advantages of HIPIMS have been revealed in 

the past literatures by many authors by utilizing it during the deposition process. For 

example in case of metallization Mozgrin et al [226] showed the importance of HIPIMS 

as technique which can produce higher deposition rate. Kouznetsove et al demonstrated 

HIPIMS as highly ionised source for filling trenches with high aspect ratio for Cu flux 

[227]. Alami et al. showed that HIPIMS deposited Ta film on complex geometry 

substrates can grow with a direction normal to substrate surface [228]. On the other side
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of application, HIPIMS was successfully used to deposit single nitride film. Systematic 

study by Ehiasarian et al demonstrated the importance of HIPIMS over UBM deposition 

where HIPIMS deposited CrN film showed dense microstructure with flat top columns. 

Thus HIPIMS technique is evolved as successful deposition technique for metal layer 

deposition to single nitride to oxide and nano layer deposition. After the scaling up of 

this technique at industrial applications by Ehiasarian et al [229], nano layer CrN/NbN 

coating was successfully deposited by mixed HIPIMS-UBM, where the influence of 

HIPIMS was clearly revealed by showing its efficiency in producing highly ionised 

state of metal atoms and denser microstructure without any inter columnar voids [228].

Figure 5.2 shows the TEM cross-section showing the microstructure of 

nanoscale TiAlCN/VCN coating as a function of deposition technique. The 

microstructure of TiAlCN/VCN multilayer coating deposited by reactive pure UBM and 

HIPIMS-UBM techniques have clearly revealed the all important coating zones such as 

interface, base layer the bulk of the coating and the top surface of the coating (See 

Figure 4.19a and 4.19b respectively in Chapter 4). The coating -substrate interface 

appears very sharp and clean, no contamination or amorphous layers can be observed, 

which indicates effective surface sputtering during the HIPIMS etching step used prior 

to the deposition. The physical and metallurgical processes taking place during HIPIMS 

surface pre-treatment are explained in details in [205]. The clean and sharp interface, 

which is a fingerprint of HIPIMS etching is produced by effective removal of surface 

oxide or other contamination layers by bombardment with accelerated to 1000 eV and 

higher metal ions generated by the HIPIMS discharge. A shallow (5nm-10nm) metal ion 

implantation also takes place during surface bombardment without deteriorating the 

crystallinity of the substrate material, which promotes local epitaxial growth of the 

subsequently deposited coating resulting in high adhesion of the coating. The adhesion 

value of the coating is listed in Table 4.1.
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Figure 5.3 TEM cross sectional image of nanoscale TiAlCN/VCN coating as a function 

of coating deposition.

Significant structural differences were explained in section 4.4.2. The under 

dense structure with many intercolumnar voids segregated with carbon was resulted for 

milder ion bombardment case of UBM deposition. The void like intercolumnar structure 

in some cases start right from the interface and continue through the base layer and bulk 

of the coating thus providing direct access for the working environment to attack the 

substrate (see the intercolumnar region pointed by a broken arrow, figure 4.19a). These 

type of columnar structure might be susceptible to show deformation and fracture under 

heavy loading conditions. Hence it is very important to close this open columnar week 

structures, which can be possible only by increasing the kinetic energy transferred to the 

condensing atoms during the coating growth.

In contrast, when HIPIMS involved, the microstructure was very dense which is 

attributed to the high energy of the arrival particles resulting in high ad-atom mobility
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on the substrate surface, increases the nucleation density and significantly reduces the 

atomic shadowing effect during the coating growth Figure 4.19b. Atomically clean 

coating-substrate interface appears any contamination or amorphous zone to the 

effective bombardment of the surface by high energy V+ metal ions generated in the 

HIPIMS discharge, resulting in intensive sputter-cleaning of the surface and low energy 

ion implantation as described in details in [205]. It is expected that the void- free 

structure of HIPIMS-UBM coatings could provide better protection against wet or high 

temperature corrosion and show enhanced mechanical properties such as hardness and 

wear resistance. Also, careful observation of the coating microstructure reveals a dense, 

free of inter-columnar voids coating, which is a pre requisite for better protection 

against rapid oxidation at high temperatures and enhanced mechanical and tribological 

properties at elevated temperature. The figure 5.3 shows the higher magnification image 

of Base layer (TiAIN) -  coating (TiAlCN/VCN) interface and highly dense part of the 

coating which clearly reveals the multilayer structure.

Thus, when HIPIMS is involved during the coating growth, the significant 

advantage has been seen in two aspects. First, the average kinetic energy transferred to 

the film during the coating growth is increased. This can be justified by the high 

fraction of metal ions sputtering observed through energy resolved mass spectrometry. 

Hence, higher fraction of metal ions bombardment during the HIPIMS-UBM deposition 

has significantly increased the adatom mobility on the substrate surface and as a result 

denser microstructure was achieved. The column boundaries are closed which has 

reduced vertical segregation of carbon atoms. Thus highly dense microstructure 

achieved in this case, has shown its tribological advantage in terms of enhanced wear 

resistance when compared to UBM deposited coating. The carbon interface between the 

individual layer is believed to reduce the bonding strength and helps to delaminate 

individual layer laterally along sliding direction. Further, benefit of closed columnar 

dense microstructure was observed in terms of oxidation resistance of the coating, 

which will be discussed in the coming section.
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Figure 5.4 High magnification image of TiAlCN/VCN coating deposited by HIPIMS-UBM 
technique showing highly dense microstructure.

B. Reactive pure HIPIMS deposited case

The major microstructural change has been observed for TiAlCN/VCN coating, 

when deposited by reactive pure HIPIMS technique. The high energy bombardment by 

higher fraction of metal ions (Ti+, Al+ and V+ ) and carbon ions (C+, CxHy+) have 

influenced the grain growth of TiAlCN and VCN, in a unique way. Figure 5.1 shows 

the variation in the microstructure of TiAlCN/VCN coating grown under the influence 

of milder ion bombardment (UBM), high energy bombardment (HIPIMS-UBM) and 

pure HIPIMS technique at constant bias voltage of -75 V.

The low magnification BF image of pure HIPIMS deposited coating shows the

microstructure which is distinct itself from other two cases of UBM and HIPIMS-UBM.

The TEM micrographs of HIPIMS deposited coating further revealed the fine structure

of the base layer (TiAIN), and bulk of the TiAlCN/VCN coating. The coating clearly

demonstrated the “graded microstructure” of TiAlCN and VCN grains. The coating
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showed 5-8 nm thick multilayer structure adjacent to TiAIN base layer. This region 

reveals a white lateral phase segregated at the interfaces of the individual layers. This 

structure is typical for TiAlCN/VCN coatings deposited by sputtering and its growth 

mechanism was described previously in [213]. The structure which evolves further with 

coating growth is one of a typical nanocomposite consisting of dark contrast grains 

(most probably Me-CN where Me is Ti-Al-V) surrounded by carbon-based phase 

forming a white contrast tissue phase (figure 4.21). The grain size reduces gradually 

with thickness at the expense of the white phase and no grains can be seen on the very 

top region of the coating (figure 4.21).

The Point EDX analyses were carried out in different zones of the coating 

namely base layer and nanoscale multilayer, bulk of the coating and top of the coating, 

has further confirmed the gradual transformation in the structure with thickness of the 

coating takes place changing from crystalline at the base to nanocrystalline in the bulk 

and finally random orientation small grain nanocrystalline to almost X-ray amorphous 

structure on the top. The GAXRD measurements (Figure 4.15) taken on pure HIPIMS 

deposited TiAlCN/VCN coating at various angles have further confirmed the graded 

structure of the coating.

Usually, the nanocomposite or graded microstructure was possible to achieve 

only through hybrid processes involving two or more sequential deposition steps. But in 

this particular case of “pure HIPIMS”, we could achieve graded like microstructure for 

TiAlCN/VCN coating in single deposition run. This unique structure and obviously 

compositional evolution obtained in one deposition process is believed to be due to the 

target poisoning effect which takes place in reactive (carbon-nitrogen containing 

atmosphere) HIPIMS. A clear evidence about the reactivity of the HIPIMS plasma 

sustained in a mixed CH4+N2+Ar atmosphere was gathered by the energy resolved mass 

spectrometry, see paragraph 4.1 and 5.1. The large amount and variety of reactive gas 

ions as well as free carbon ions (C+) influences strongly both the target poisoning effect 

(reduction of the metal content in the film with time) as well as the C incorporation in 

the film. AES depth profile (not shown here) revealed that the C content in the film 

gradually increased with the film thickness from 25 at % at the TiAIN base layer- 

TiAlCN/VCN coating interface to 70% at the very top of the coating. Thus, increased 

condensation of free carbon atoms on the grain boundaries of growing film can hinder 

the (Ti-Al-V)-CN grain growth by forming extra nucleation sites for a-C and CxNy grain 

growth surrounding Me-CN phase. Similar results of structural transitions from solid
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solution Ti (N, C) to nanocomposite of nc-Ti(N,C)/a-(C,CNx) was reported for pulsed 

DC magnetron sputtered Ti-C-N coating[230]. In this case, the graphite target was used 

to incorporate C in the TiN matrix. Graphite targets usually require higher discharge 

powers in order to incorporate more C inside the Me-N phase, which is not advisable 

since the process of C incorporation from graphite have often reported to produced 

dislocations/defects inside the coating [230, 231]. As a contrary, in our case, since high 

energy ionic species of methane (CxHy+) is obtained by high frequency electron impact 

with CH4 molecule, the possibility of C atom implantation inside the growing film is 

more precise. This fact avoids the possible formation of porous structure or defects 

inside the deposited film, thus leading to denser microstructure, as seen in Figure 4.20.

5.4 Oxidation behaviour

Elevated temperature (up to -750 °C) oxidation behaviour of TiAlCN/VCN 

multilayer coating deposited by all the three technique was analysed by two different 

approaches. First one is by iso-thermal oxidation analysis using thermogravimetric (TG) 

analyser (room temperature to 1000 °C), and second one is by tribo-oxidation during 

dry sliding process performed at three set of temperatures from room temperature (RT) 

to 650 °C. Only difference between above mentioned approach is that, in the former 

case, coating surface is influenced by only surface oxidation process, where as in the 

later case, both surface oxidation and tribo-oxidation processes were played an 

important role in determining the oxidation behaviour of the coating at elevated 

temperature. Subsequently the characterisation of oxidised surface was carried out by 

TG, XRD, Raman and SEM analysis only on HIPIMS/UBM deposited coating, since 

the chemical composition is same in all the three deposited case. The influence of as 

formed oxide phases identified by above mentioned analysis is then correlated to 

friction and wear behaviour of the coating.

In case of isothermal oxidation, the substrate (stainless steel) was deposited on

all the sides, oxide contribution from the substrate was prohibited. But, during dry

sliding conditions, the oxides from the substrate (High speed steel) were also identified.

In case of polycrystalline thin films the oxidation process is assumed to be governed by

the diffusion of oxygen molecules within the coherent layers; in our case it is within

alternate layers of TiAlCN and VCN. Hence, the oxidation behaviour of the nanoscale
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TiAlCN/VCN multilayer coating has clearly shown its dependency on coating 

microstructure, which is strongly influenced by the deposition technique utilised to 

deposit the coating.

The T-G curves for the coatings deposited by all the three processes of UBM, 

HIPIMS-UBM and pure HIPIMS have shown similar trends (see figure 4.23). The 

oxidation process in all the three cases developed in two stages except for pure HIPIMS 

deposited TiAlCN/VCN coating. GAXRD pattern of the as deposited and oxidised 

surface of TiAlCN/VCN coating deposited by mixed HIPIMS-UBM taken at an 

incident angle of co =2°. The coated samples were heat-treated isothermally in the 

furnace of the TGA system for 15 min at 200 °C, 560°C, 670°C, and 750°C 

respectively. The temperatures were chosen on the basis of the specific regions of the T- 

G curve (Figure 4.23). As discussed in the results section 4.5.2, important oxide phases 

of A120 3, T i02 (Brookite), T i02 (Rutile), V 02, V20 3, V3O7, V20 5, A1V20 , AIVO4 have 

been identified from the oxidised surface of TiAlCN/VCN coating. Despite A120 3) all 

other oxide phases are found to be stable after thermal and tribo-oxidation process. 

These oxide phases are classified as Magneli phase oxides based on the earlier literature 

reports illustrating their special crystal structure with low inter atomic layer shear 

strength. Numerous literatures are available explaining the contribution of Magneli 

phase oxides in stabilizing friction and wear performance of the coating under dry 

sliding conditions. For example oxygen deficient crystal structures for Ti-based oxides 

with rutile form of T i02.x have known to change their shear strength when tangential 

force is applied through sliding wear conditions [246, 247]. Similarly, Vanadium is 

known to form Magneli phase with oxygen. General stoichiometric formula for these 

vanadium based Magneli oxides can be given as [248]:

V„02n-i = V20 3 + ( n -  2) V02 where 3 < n < 9.

These oxide crystal structures based on Ti and V are known to accommodate velocity 

between the two sliding counterparts leading to reduced friction force between the tribo 

couples. Further the Raman spectra (see Figure 4.29) collected from the wear track have 

also shown signature of similar oxide phases with additional oxides of Fe20 3 and Cr20 3 

which are contributed from the substrates during the tribo-oxidation mechanism.

TiAIN is probably one of the oldest PVD coatings dedicated to high temperature 

applications. Alloying TiN with A1 was a successful approach due to formation of a 

double layer oxide scale (Ti02/Al20 3) where the dense top A120 3 layer provides a
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barrier for the diffusion of oxygen from the environment thus enhancing the oxidation 

resistance of the coating [249]. Reported values for the temperature of the onset of rapid 

oxidation of TiAIN are in the range of 850°C [250]. Unlike Al, addition of V and C to 

the coating constitution is expected to deteriorate the oxidation resistance; therefore the 

application of TiAlCN/VCN is restricted to the medium temperature range of up to 

800°C.

The oxidised surface of the coating after 200 °C have shown very thick layer, 

probably of crystalline (X-AI2O3, formed due to the initial reaction between the Al and 

oxygen molecules forming a protective layer against rapid oxidation. The figure shows 

the SEM micrograph of oxidised surface of TiAlCN/VCN coating after 200 °C. The 

EDX spectrum clearly shows the Al peak which clearly supports the fact of formation 

of Al-rich oxide phase at these early stages of oxidation process. This result is further 

confirmed through Raman analysis of wear track generated at 200 °C, which 

successfully identified the traces of (X-AI2O3 phase formed due to tribo-oxidation.

The possible reaction at this stage can be written as,

4A1+ 302 —> 2A120 3

At this particular stage, since AI2O3 acts like potential barrier for oxygen molecule to 

penetrate further into the grain boundaries of the coating, the oxidation of coating 

element is not been observed. At this stage, the tribo-oxidation process is observed to be 

less pronounced in forming lubricious oxides. This fact was confirmed through the 

Raman spectra collected from the wear debris which showed minimal signature for 

lubricious Magneli phase oxides (see Fig. 4.29). This is due to the less humid condition 

countered on the coated rotating disc at this particular temperature, where sufficient 

lubrication by Magneli phase oxide against alumina ball is significantly less than that 

observed at higher temperatures. Hence combined effect of surface oxidation and tribo- 

oxidation is not much favoured in producing lubricious oxides are believed to be the 

important reason for sudden increase of the coefficient of friction value (0 .8 ) when 

sliding test performed against alumina (AI2O3) ceramic ball at 200 °C (see figure 4.10). 

It is also important to notice that in all the three deposited case, wear rate of the 

TiAlCN/VCN coating at 200 °C, where the wear rate was higher by one-to-two order of 

magnitude when compared to the wear rate calculated for the same coating at room 

temperature (see table 4.1). This was attributed due to the brittle failure of the coating
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material at the asperity contacts and causes three body wear mechanism at this 

particular stage.

Subsequently after 200 °C, gradual increase in the mass gain was observed in 

case of UBM and HIPIMS-UBM deposited coating at 550°C. This is believed to be due 

to oxidation of V which is then followed by a steep mass increase at 800°C representing 

the temperature for the onset of rapid oxidation of the entire coating. However, the onset 

of rapid oxidation for the UBM and HIPIMS-UBM deposited coatings is higher by 

162°C than that reported earlier for the carbon-free arc- bond-sputtered TiAlN/VN 

(-638 °C) coatings where the etching step is carried out by arc discharge [232]. This 

significant increase of the oxidation resistance of the HIPIMS etched coatings (A and B) 

can be attributed to the elimination of the droplet phase in HIPIMS and therefore the 

growth defects which are a common feature for the arc etched and UBM deposited 

coatings [251]. It is also interesting to note that the amount of oxygen diffusing into the 

coating at elevated temperature, represented by the sample weight-gain, is greater for 

the UBM deposited coating compared to HDPIMS-UBM deposited coating. This can be 

clearly seen in Figure 4.23 where the oxidation curve of the UBM deposited coating 

shows about 30% more weight gain compared to that of the (HIPIMS-UBM) deposited 

coating. This can be attributed to the more porous microstructure of the UBM deposited 

coating compared to that of the (HIPIMS-UBM) deposited one. These observations 

clearly demonstrate the effect of the more energetic ion bombardment achieved during 

the HIPIMS deposition process on the microstructure of the coating, which in turn 

improved the oxidation resistance of the coating at elevated temperatures.

Significant difference can be seen in the case of reactive HIPIMS deposited 

TiAlCN/VCN coating. The onset of rapid oxidation was shifted to higher temperatures 

o f about -  810 °C as compared to the UBM and HIPIMS+UBM cases. Furthermore, 

compared to the UBM deposited coatings, no initial oxidation at 550 °C was observed. 

The weight gain due to oxidation is lower by factor of two when compared to UBM 

deposited TiAlCN/VCN coating which again demonstrates the effect of the coating 

densification due to utilisation of HIPIMS. Further, the top X-ray amorphous zone of 

the coating expected to delay the diffusion of oxygen molecules as zone is of free from 

grain boundaries to provide diffusion path.

The coating oxidised at 560 °C, (immediately after the first step mass gain) 

show a mixture of different oxide phases of TiC>2 (Rutile and Brookite), VO2 , V 2 O3 , 

V3 O7 , V2 O5 and AIVO4 . These observations of V-based Magneli phase oxides are
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consistent with the previously reported literature by Lugscherider et.al. [252], where 

stable polycrystalline mixtures of V2 O5 and V 0 2 are observed up to a temperature of 

605 °C in vanadium oxide coating deposited by MSIP-PVD process. N. Fetch et.al.

[203] has also reported the formation of various type oxygen reduced state of V-based 

oxides formed after oxidising VN coating at 600 °C. Recently, Zhou et.al. [232], 

studied the oxidation property of carbon free TiAlN/VN coating deposited by UBMS 

technique, has also shown the formation of V2 O5 dominated phase in the oxidised 

surface of TiAlN/VN coating at 600 °C. The morphology of the oxide scale formed at 

560°C, is showed in result section (see Figure 4.26). The oxide particles with plate like 

shape were V- and Ti- deficient and richer in Al, which most probably indicates the 

AIVO4  phase. This was confirmed through ED AX measurement as shown in Figure 

4.27. Further increase of the temperature to 610 °C, only V rich oxides with needle like 

morphology (see Figure 4.26) have been identified which is also confirmed through 

EDAX measurement as shown in Figure 77b.

These findings are further supported by GAXRD pattern taken at 670 °C (figure 

4.24), which has clearly showed the mixed phase of oxides dominated with rutile and 

AIVO4  with increased peak intensity in the region between 20 = 26°- 27°. At the same 

time, a decrease in the intensity of the peak at 20 = 25°was observed, which can be 

explained by the transformation of Brookite phase to Rutile phase which takes place at 

>500 °C [253]. At the same time, a decrease in the intensity o f the peak at 20 = 25° was 

observed, which can be explained by the transformation of Brookite phase to Rutile 

phase which takes place at >500°C [253]. Some amount of AIV2 O phase was also 

detected. The formation of AIVO4  and AIV2 O are reasoned with bulk reaction of AI2 O3 

and V2 O5 [233]. The Raman spectra collected from the wear track generated at 450 °C, 

has shown high intensity peaks for V2 0 5 , which is combined effect of oxide formation 

by tribo-oxidation (flash temperature > 600 °C and external heating of the sample. It is 

very important to notice here, that the V2 O5 has the tendency to go to molten phase at 

this stage i.e. at flash temperatures achieved at the asperity contacts during sliding, 

implies friction reduction (0.5 measured in our case at 450 °C), due to sliding over 

molten phase. The smooth surface morphology of the wear track at this stage discussed 

in section 4.5.3 is clear evidence of this fact.

At 750°C, a temperature close but below the onset of rapid oxidation (800°C) a 

further increase of the intensity of the peaks detected at 670 °C can be observed, which
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indicates simply a kinetic progression of the oxidation process. It is important to 

mention however that in previous studies of the oxidation behaviour of UBM deposited 

TiAlN/VN [244], oxides such as V2 O5 , AIVO4 , TiC>2 were only detected at temperatures 

below 635°C. Above this temperature rapid oxidation and oxide scale spallation was 

reported. In comparison, in the case of (HIPIMS-UBM) deposited coatings the 

potentially lubricious oxides of V2 O5 , AIVO4  and Ti0 2  well adherent to the substrate 

were present to temperatures up to 750°C. As no Cr, Ni or Fe based oxides were 

detected, it can be assumed that the stainless steel substrate was reliably protected by 

the PVD coating up to the test temperature. The Raman spectra from wear track 

generated at 650 °C has shown (see Figure 4.29) higher intensity showing formation of 

a mixture of several oxides such as a  -F2 O3 , V 2 O5 , and Ti0 2 . This spectral range have 

also shown significant amount of V-containing Aluminium oxide phase, most probably 

AIVO4  as identified by XRD analyses. The (X-F2 O3 is contributed by wear debris of the 

substrate material. SEM observations showed oxide scale morphology similar to that 

formed at 670°C, Fig.4.26c. At this stage as indicated by the TG curve a larger amount 

of lubricious oxides is formed, which provide more effective solid lubrication resulting 

in smooth wear surface morphology. The smoothest wear track morphology is achieved 

at the highest test temperature of 650°C as at this stage due to the synergy effect of the 

tribo and external heating oxidation the largest amount of the lubricious oxides is 

generated, which promotes the polishing effect during sliding. This situation is also 

reflected by the coefficient of friction curve on figure 4.10 here the coefficient of 

friction at 650°C is the lowest. This study shows that there is a clear link between the 

environmental conditions and the amount of the lubricious oxides generated during dry 

sliding and the friction and wear behaviour of the PVD coating.

5.5 Wear mechanism and cutting performance of TiAlCN/VCN 

coated cutter in machining Al-alloy

During the dry sliding conditions, formation of thick tribofilm adhered to the

worn surface was considered as a major setback for the tool life time [254]. The

thickness of this tribofilm was measured to be around 5-10 nm. These strongly bonded

tribofilms pluck several 1 0 s of nanometre thick coating material from the tool edge

there by leading to faster wear rate [213]. This tribofilm formation was reduced by

producing coating which is chemically inert to the work piece used during the

machining process. One of the major challenges in the aerospace industry are machining
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of sticky alloys (Ti, Al, Ni). The TiAlCN/VCN multilayer coating has emerged as an 

alternative [213], to the carbon free TiAlN/VN coating which has shown faster wear 

rate during the machining [255] of those sticky alloys. The intention behind the carbon 

inclusion between the individual layers of TiAlN/VN was to reduce the metallurgical 

reaction with work piece materials (sticky alloys) such as Ti, Al and Ni based alloys 

during machining process [213]. The segregation of carbon between the interface of 

TiAIN and VN is shown in Figure 5.4. Further, this carbon layer has reduced the shear 

strength between the multilayers, which has been a key requirement for the smooth wear 

mechanism dry sliding conditions. This mechanism was termed as “layer by layer” wear 

mechanism [213]. The recent report has revealed the fact that during dry machining of 

aerospace grade Al-based alloy, TiAlCN/VCN coated tools have shown a factor four 

longer life time than compared to DLC and TiAlN/VN coating [213]. In one more 

experiment, the TiAlCN/VCN coated drill has produced 130 holes on the MMC in 

contrast to 2 holes produced by uncoated drills [213]. Here, the coating was deposited 

by UBM technology. The enhanced tribological performance of TiAlCN/VCN coating 

in this report was attributed to the layer by layer wear mechanism.

Wear mechanism during the dry sliding conditions are often controlled by the 

oxides formed between the tribo-couples which further determine the performance of 

the coated tools. The successful protective tool requires good adhesion, high wear 

resistance at cutting temperatures, chemical stability and inertness relative to the work 

piece. Besides this preliminary requirement structurally, the coatings should be denser 

with fine grain, crystalline microstructure, smooth surface morphology and controlled 

compressive residual stress are also important. Hence the effort in this thesis was to 

meet all the above requirement to protect the tools utilised in for machining sticky 

alloys used in aerospace industries.

Two flute 25 mm diameter, 2.5 radius high speed machining end mills from 

S290 HSS materials is coated with TiAlCN/VCN coating by HIPIMS-UBM technique. 

The purpose of conducting this test was to correlate the oxidative wear mechanism of 

TiAlCN/VCN coating determined at laboratory conditions with that of practical 

application of dry high speed milling test. At laboratory scale, the pin-on-disc dry 

sliding tests were carried out and as formed oxide debris were analysed with Raman 

spectroscopy. Similarly, after dry milling test, the tool edge was characterised from 

Raman spectroscopy in order to understand the chemical integrity with the coating 

stability.
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The Raman spectroscopy and XRD has clearly revealed the formation of the 

lubricious Magneli phase oxides suchas as V2 O5 [20], T i0 2, TiAlVCU, etc, both after 

isothermal and tribo oxidation mechanism. Similar oxide phases have also been 

identified on the tool edge after performing metal cutting operations. These facts clearly 

confirm the beneficial effect of the V in the reduction of friction. Apparently the effect 

of carbon has also been observed very clearly in stabilizing the friction and wear both in 

pin-on-disc and during milling test. The higher intensity D and G bands observed in 

both Green and UV laser spectra demonstrate that during machining graphitic carbon is 

formed on the coating surface which acts as a solid lubricant. This has been shown in 

both the case of deposition i.e., UBM and HIPIMS-UBM (Figure 4.32 and 4.33). 

Hence, there is not much difference in terms of chemical integrity of the TiAlCN/VCN 

coating has been seen with respect to the technology being utilised to deposit the 

coating.

Careful observation of the flank wear curve (Figure 4.31) vs number of laps suggests 

that the HIPIMS-UBM deposited cutter exhibit more stability during the wear 

performance with slow increase in the flank wear rate with cutting length over 500 m 

(0.486 m in each cutting pass). This can be seen by sudden increase in the flank wear in 

case of UBM deposited cutter. Also, the lower surface roughness value measured in 

case of HIPIMS-UBM deposited cutter (0.023) when compared to UBM deposited 

cutter (0.026) prior to the machining process has lead to form reduced BUE formation 

after cutting operation. This can be clearly seen in Figure 4.30a. The surface finish after 

the machining operation for HIPIMS-UBM deposited cutter was better than UBM 

deposited cutter.

The Raman spectroscopy measurements collected from the UBM deposited tool 

cutter has shown the evidence of graphitisation process that is believed to develop due 

to the combined mechanical and thermal load exerted on the tool surface during cutting. 

The high hardness S i0 2 and mixed (AlSi) O constitute the built up material which is 

"cold welded" to the tool surface. The periodic removal of this material which carries 

away some portions of the coating represents one of the wear mechanisms taking place 

on the cutting edge another being the micro abrasion. Moreover, the Raman 

identification of lubricious oxides both at SiAl alloys BUE contact surface and tool edge 

(Figure 4.30 a and b) demonstrates that the material removal by cutting is accompanied 

by intensive material transfer between the surfaces of the tool and work piece material 

in the sliding contact. While this is a common situation in any cutting process this study
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shows that a proper coating material selection in the coating design stage could 

dramatically influence the tribology in the contact area by providing compounds with 

lubricious properties in dry sliding conditions.

In summary, after comparing the milling test by tools coated with UBM and 

HIPIMS-UBM deposited coating, it is very difficult to draw a conclusion as which 

technique is better. This is because, the wear performance in both the cases is appeared 

to be stabilizing due to lubricating oxides forming between the tribocouples. However, 

the slight impact of structural difference observed in TEM micrograph for coating 

deposited with two techniques (UBM and HIPIMS-UBM) has shown marginal variation 

in the flank wear during the milling test. This has been explained in the above 

paragraph.
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Chapter 6 

Conclusions

This research work was aiming to decrease the gap existed between understanding the 

HIPIMS technology and its impact on microstructure and functional properties of 

nanoscale TiAlCN/VCN coating, which was previously developed in our group by 

conventional UBM technology. A systematic investigation of high metal ion 

bombardment observed during HIPIMS technique and its impact on the microstructure, 

mechanical, oxidation and tribological properties of nanoscale TiAlCN/VCN coatings 

has lead to an important contribution to the understanding of the growth processes 

taking place in TiAlCN/VCN system especially when HIPIMS was utilized. The 

importance of HIPIMS technology has been realised in each and every aspect of the 

results obtained in this research work. But, a very important and unique finding has 

been in terms of microstructural evolution of TiAlCN/VCN coating from multilayer to 

graded like microstructure, which was achieved for TiAlCN/VCN coating when 

deposition was carried out with pure reactive HIPIMS process. This has further 

increased the important of HIPIMS and opened a new door for advanced research and 

development in the field of thin film, where functionally graded nanostructures and their 

importance in real world nano device application are increasing. Since, HIPIMS 

technology is plasma based PVD technique, the advantage of HIPIMS technique was 

realized in dissociation of hydro carbon molecules in to high energy carbon ions during 

the deposition of TiAlCN/VCN. Hence, it will not be a surprise if HIPIMS replaces PEI 

and PACVD technology, which were predominantly used in industries to deposit carbon 

based coatings such as DLC, Me-C etc.

Following conclusions are made for TiAlCN/VCN coating deposited by UBM and 

HIPIMS-UBM techniques

• Nanoscale TiAlCN/VCN coating was successfully deposited in industrial PVD coating 

machine (Hauzer HTC-1000-4) by reactive UBM, HIPMS-UBM and pure HIPIMS 

techniques on various substrates including complex geometry milling tools.

• Mass spectrometry analysis of the HIPIMS of V plasma during the surface pre­

treatment process revealed the presence of higher content of V+ metal ions as
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compared to Ar+ gas ions with a ratio of 1.25:1, respectively. The majority of metal 

ions were V2+ with 27% and ionization states of up to 5+ were detected.

• Mass spectroscopy compared the plasma composition during TiAlCN coating 

deposition process using HIPIMS or UBM discharges. It was found that the metal ion 

content in the HIPIMS discharge was about 12% with Al1+=9%, Ti1+=2%, C1+=l%, 

whereas in UBM mode only 3% of metal ions with Al1+= 2.8%, Ti1+= 0.23%, and 

C1+=0.13% were detected which is significantly lower than in the HIPIMS. Likewise, 

during the deposition of VCN, the metal ion concentration was found to be 7.73% in 

case of HIPIMS and significantly lower at 0.56% in case of DC discharge.

• The ion flux in the coating step for both HIPIMS and UBM processes was dominated 

by gas. Ions of the following species were identified in the mass spectra: Argon, N2, 

stable hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H8), radicals (CH, CH2, CH3, C2H, 

C2H5, C3H2, C3H3, C3H6, C3H7), and nitril compounds (HCN, H2CN, NH, and NH3).

• Cross-sectional SEM imaging revealed clear differences in the structure of HIPIMS- 

UBM and UBM deposited TiAlCN/VCN coatings. UBM coatings show open, broken- 

rock like coarse columnar structure where mejority of columnar structures are 

terminated with horizontal terraces, which indicates relatively weak interface bonding 

between the individual layers of the nanolaminated material. In contrast a very dense 

almost glassy cross section is observed for the HIPIMS-UBM deposited coatings.

• XTEM analyses further confirmed the under-dense structure of UBM coatings showing 

a course structure with many inter-columnar voids. When HIPIMS is involved in the 

deposition step, extremely dense and smooth coatings were deposited, which was 

attributed to the high energy of the arrival particles resulting in high ad-atom mobility.

• Thermo gravimetric analysis showed that TiAlCN/VCN coatings have relatively high 

onset of rapid oxidation temperature in the range of 800°C. However, HIPIMS-UBM 

coatings showed by 30% less oxidation weight gain as compared to pure UBM 

coatings.GA-XRD analyses demonstrated that not only the thickness but also the phase 

composition of the oxide scale varies with the exposure temperature. It was found that 

for HIPIMS-UBM deposited coatings the potentially lubricious oxides of V20 5, A1V04  

and Ti02 well adherent to the substrate were present to temperatures up to 750°C.

•  Low coefficient of friction of p=0.65 was measured for TiAlCN/VCN coatings for both 

deposition techniques, HIPIMS-UBM and UBM. However, the wear coefficient of the 

coating deposited by HIPIMS-UBM showed two orders of magnitude lower value 

(1.4xl0' 17 m3N'1m'1) than that for the UBM deposited coatings (4.2xl0‘ 15 n^N 'W 1),
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which represents significant advantage. This enhanced performance in dry sliding wear 

conditions can be attributed the extremely dense structure of the HIPIMS coatings.

• The Pin-On-disc measurements revealed a significant reduction in the friction 

coefficient from 0.67 ambient temperatures to about ~0.5 at 450 °C and -0 .4  at 

650 °C. This can be attributed to the as-formed highly lubricious magnelie phase 

structured oxides such as V2 O5 , VO2 , TiC>2 , and AIVO4  during the sliding 

process. Also, the presence of a carbon based phase between the individual 

layers of the nanolaminate further influences the wear behaviour by layer by 

layer wear mechanism. This can be seen by measured low wear rate of 

Kc=1.4xl0 ' 17 ir^ N 'W 1, during the sliding process.

• The Raman spectroscopy studies have identified the generation of highly 

lubricious phases (V2 O5 , VO2 , Ti0 2 , and AIVO4 ) during sliding at room and 

elevated temperature thus providing additional tool for better understanding the 

high temperature tribological behaviour of TiAlCN/VCN.

Following conclusions are made for TiAlCN/VCN coating deposited by pure 

HIPIMS process

• The novel HIPIMS technology offers better plasma conditions with higher 

ionisation and higher Me+ to Ar+ ratio: For pre-treatment conditions: highly 

charged V metal ions - up to 4+ and metal ion -to- gas ion ratio >1

F or deposition conditions: factor 10 more carbon ions - fully stripped of 

hydrogen, factor 3 more Al ions and factor 10 more Ti ions when compared to 

UBM sputtering.

• The analysis showed that a gradual transformation in the structure with thickness 

of the coating takes place evolving from crystalline nanoscale multilayer of 

TiAlCN/VCN at the base to nanocomposite structure comprising nanocrystalline 

TiAlVCN surrounded by C-based tissue phase in the bulk and finally to Xray 

amorphous structure of Me-C on the top. This is a unique coating architecture 

where the toughest multilayer zone is at the bottom leading to enhanced load 

bearing capacity, followed by a nanocomposite zone which provides for high 

wear resistance finally followed by a dense X-ray amorphous top layer (having 

no grain boundaries) which enhances the oxidation resistance.
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• "Depth profiling" the friction and wear behaviour at room temperature of the 

HIPIMS deposited TiAlCN/VCN coatings revealed that immediately after the 

"running" stage, a low friction coefficient zone exists where the mean value of 

COF is pi = 0.37. After that the friction gradually increases to reach a "steady 

state" zone where higher coefficient of friction values of \i = 0.48 were recorded. 

In comparison, UBM deposited TiAlCN/VCN coatings tested under similar 

conditions show an order of magnitude higher wear coefficient of 4.1 x 10' 15 

m V r n 1.

• TG analyses revealed that the onset of rapid oxidation for reactive HIPIMS 

deposited TiAlCN/VCN coatings was shifted to higher temperatures as 

compared to the UBM and HIPIMS+UBM cases to about 800 °C. The weight 

gain due to oxidation was factor of five lower than UBM deposited coating.

• High temperature pin-on-disc tests revealed that the COF of HIPIMS-deposited 

TiAlCN/VCN initially increases to \l = 0.8 at 200 °C and then decreases to |i =

0.45 at 650 °C. HIPIMS deposited TiAlCN/VCN show superior performance at 

elevated temperatures of 650 °C, (Kc = 1.0 x 10' 13 n ^ N 'W 1) over the UBM 

deposited (Kc = 5.8 x 10"13 n ^ N 'W 1).

Raman spectroscopy analysis on the cutting edge of TiAlCN/VCN coated end 

mills and the contact surface of the built up material produced during machining 

of Al-Si alloy revealed that the cutting process produces lubricious phases: V 2 O5  

Magneli phases via tribooxidation and graphitic carbon via high temperature 

exposure. At the same time highly abrasive phases of SiC> 2 and mixed (AlSi)O 

are formed as well which are the main source of wear of the cutting edge.
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Further research

The following points will highlight the possible research work which can be 

carried out in near future as pertaining to the present research work projected in thesis:

TiAlCN/VCN coatings are successfully deposited by different techniques, such 

as reactive UBM, HIPIMS-UBM and pure HIPIMS process. Since all the deposition 

techniques carried out under similar bias voltage (-75 V), the comparative 

microstructural investigation can be studied by producing the coating at different ion 

bombardment conditions (different bias voltages) by above mentioned techniques.

The TGA analysis performed on the coating has shown successively lower oxide 

mass gain for each of the three types of IPVD techniques used in this work. A 

systematic study on type of oxide formation, their structure can be carried out at 

elevated temperature inorder to correlate its importance for wear performance at 

respective temperatures. For this, cross sectional SEM, TEM and Raman and XRD 

analysis would be necessary.

The importance of wear engineering oxides both at room and elevated 

temperature tribological applications can be investigated by crossectional TEM analysis 

of wear tracks generated by pin-on-disc measurement at specific test temperatures. This 

would lead to understand the role of tool wear mechanism in real world applications of 

high speed machining against the work piece. Here, it is important to carry out the 

crosssectional TEM analysis and Raman spectroscopy of worn coated tool edge. This 

helps to compare the laboratory scale experimental results with real time problem faced 

during the application.

In case of reactive pure HIPIMS deposited TiAlCN/VCN case, the 

microstructure with functionally graded zones (multilayer-nanocomposite-Xray 

amorphous) were observed. Moving further, the deposition parameters such as CH4  gas 

flow or change in the partial pressure of CH4  can be altered at various bias voltages, so 

that the carbon incorporation and its effect on the microstructure of TiAlCN/VCN can 

be studied. Simultaneously, the systematic plasma monitoring during the reactive 

HIPIMS deposition process can be carried out, where “target poisoning” effect 

triggering the onset for transition in microstructural zones can be understood in detail. 

This could lead to optimise the reactive HIPIMS process in producing graded like 

microstructure.
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After optimising the reactive pure HIPIMS process, the mechanical and 

tribological properties of individual zones can be studied in detail separately after 

achieving individual zones of the functionally graded microstructure. This amounts to 

detailed understanding of the importance of reactive pure HIPIMS deposited 

nanostructured TiAlCN/VCN coating for advanced tribological applications.

The important finding revealed in this research work by utilising reactive 

HIPIMS for nanostructured TiAlCN/VCN coating further motivates to use this 

technology in the development of other coatings involving carbon, especially, C/Cr, 

Me-DLC etc.
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