71 research outputs found

    On the Determination of a1a_1 and a2a_2 from Hadronic Two Body BB Decays

    Get PDF
    {}From Class I decays : B^o \ra \pi^+ ( \rho^+ ) + D^- ( {D^*}^- ), we determine a1a_1, and from Class III decays : B^+ \ra \pi^+ ( \rho^+ ) + \ol{D}^o ( {\ol{D}^*}^o ), we determine an allowed domain in the (a1,a2)( a_1, a_2 ) plane. We find that within one standard deviation errors, the allowed band of a1a_1 from Class I decays is at least three standard deviations removed from the allowed domain (a1,a2)( a_1, a_2 ) from Class III decays.If we expand the experimental errors to two standard deviations we do find a small intersection between the a1a_1 band and the allowed (a1,a2)( a_1, a_2 ) domain. The results usually quoted in the literature lie in this intersection. We suggest : (1) an independent measurement of the branching ratio for the Class III decay, B^+ \ra \rho^+ \ol{D}^o , (2) a high-statistics measurement of the branching ratio of the Class I decay, B \ra \ol{D} ( \ol{D}^* ) + D_s ( D_s^* ) in both charged states, and (3) a measurement of the longitudinal polarization fraction in the Class III decay B^+ \ra \rho^+ {\ol{D}^*}^o to shed more light on the questions involved .Comment: 9pages(Latex)+4 figures(PS file appended), PAR/LPTHE/94-2

    Implications of factorization for the determination of hadronic form factors in D_s^+ \ra \phi transition

    Full text link
    Using factorization we determine the allowed domains of the ratios of form factors, x=A2(0)/A1(0)x = A_2(0)/A_1(0) and y=V(0)/A1(0)y = V(0)/A_1(0), from the experimentally measured ratio R_h \equiv \Gamma(D_s^+ \ra \phi \rho^+)/\Gamma(D_s^+ \ra \phi \pi^+) assuming three different scenarios for the q2q^2-dependence of the form factors. We find that the allowed domains overlap with those obtained by using the experimentally measured ratio R_{s\ell} = \Gamma(D^+_s \ra \phi \ell^+ \nu_{\ell})/\Gamma(D^+_s \ra \phi \pi^+) provided that the phenomenological parameter a1a_1 is 1.231.23. Such a comparison presents a genuine test of factorization. We calculate the longitudinal polarization fraction, \Gamma_L/\Gamma \equiv \Gamma(D_s^+ \ra \phi_L \rho^+_L)/\Gamma(D_s^+ \ra \phi \rho^+), in the three scenarios for the q2q^2-dependence of the form factors and emphasize the importance of measuring ΓL/Γ\Gamma_L/\Gamma . Finally we discuss the q2q^2-distribution of the semileptonic decay and find that it is rather insensitive to the scenarios for the q2q^2-dependence of the form factors, and unless very accurate data can be obtained it is unlikely to discriminate between the different scenarios. Useful information on the value of xx might be obtained by the magnitude of the q2q^2-distribution near q2=0q^2 = 0. However the most precise information on xx and yy would come from the knowledge of the longitudinal and left-right transverse polarizations of the final vector mesons in hadronic and/or semileptonic decays.Comment: Latex 10 pages( 4 figures), PAR/LPTHE/94-3

    Nonfactorization and Color-Suppressed Bψ(ψ(2S))+K(K)B \to \psi (\psi(2S))+K(K^*) Decays

    Full text link
    Using Nc=3N_c=3 value of the parameter a2=0.09a_2=0.09 but including a modest nonfactorized amplitude, we show that it is possible to understand all data, including polarization, for color-suppressed Bψ(ψ(2S))+K(K)B\to\psi(\psi(2S))+K(K^*) decays in all commonly used models of form factors. We show that for Bψ+KB\to\psi +K decay one can define an effective a2 a_2, which is process-dependent and, in general, complex; but it is not possible to define an effective a2a_2 for Bψ+KB\to\psi +K^* decay. We also explain why nonfactorized amplitudes do not play a significant role in color-favored B decays.Comment: 13 pages, Latex, one figure (not included

    Nonfactorization and the decays Ds+ϕπ+,ϕρ+D_s^+ \to \phi \pi^+, \phi \rho^+ and ϕl+νl\phi l^+ \nu_l

    Full text link
    In six chosen scenarios for the q2q^2 dependence of the form factors involved in Ds+ϕD_s^+ \rightarrow \phi transition, we have determined the allowed domain of x=A2(0)/A1(0)x = A_2(0) / A_1(0) and y=V(0)/A1(0)y = V(0)/A_1(0) from the experimentally measured ratios Rsl=Γ(Ds+ϕl+νl)/Γ(Ds+ϕπ+)R_{sl} = \Gamma(D_s^+ \rightarrow \phi l^+ \nu_l)/\Gamma(D_s^+ \rightarrow \phi \pi^+) and Rh=Γ(Ds+ϕρ+)/Γ(Ds+ϕπ+)R_h = \Gamma(D_s^+ \rightarrow \phi \rho^+)/\Gamma(D_s^+ \rightarrow \phi \pi^+) in a scheme that uses the Nc=3N_c =3 value of the phenomenological parameter a1a_1 and includes nonfactorized contribution. We find that the experimentally measured values of xx and yy from semileptonic decays of Ds+D_s^+ favor solutions which have significant nonfactorized contribution, and, in particular, RslR_{sl} favors solutions in scenarios where A1(q2)A_1(q^2) is either flat or decreasing with q2q^2.Comment: 15 pages, Latex, four figure (available on request)

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of BD()(π,ρ)B\to D^{(*)}(\pi,\rho), BD()Ds()B\to D^{(*)} D_s^{(*)}, BJ/ψK()B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from BD()Ds()B\to D^{(*)}D_s^{(*)} and a_2 from BJ/ψK()B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes BD()hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of BD()νˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from BJ/ψK()B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BKA_{1,2}^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψKJ/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that BK()B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)1.9A1BK(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BKA_2^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in BJ/ψKB\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    Direct CP Violation Asymmetries in Exclusive B Decays in a Bethe-Salpeter Approach

    Full text link
    CP asymmetry in some exclusive decays of charged B meson are calculated in a Bethe-Salpeter approach. Hadronic final state interactions are ignored. Complex decay amplitudes are assumed to arise entirely from perturbative quark-antiquark loops. Calculations are done both with and without the gluon quark-antiquark vacuum polarization loops. The effects of neglecting the imaginary parts arising from the diagonal quark-antiquark loops are also studied.Comment: 15 pages, Latex, 2 eps-figures. Minor revisions. To be published in Phys.Lett.

    Hadronic Charmed Meson Decays Involving Axial Vector Mesons

    Get PDF
    Cabibbo-allowed charmed meson decays into a pseudoscalar meson and an axial-vector meson are studied. The charm to axial-vector meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise quark model. The dipole momentum dependence of the DKD\to K transition form factor and the presence of a sizable long-distance WW-exchange are the two key ingredients for understanding the data of DKˉa1D\to \bar Ka_1. The K1AK1BK_{1A}-K_{1B} mixing angle of the strange axial-vector mesons is found to be ±37\approx \pm37^\circ or ±58\pm58^\circ from τK1ντ\tau\to K_1\nu_\tau decays. The study of DK1(1270)π,K1(1400)πD\to K_1(1270)\pi, K_1(1400)\pi decays excludes the positive mixing-angle solutions. It is pointed out that an observation of the decay D0K1(1400)π+D^0\to K_1^-(1400)\pi^+ at the level of 5×1045\times 10^{-4} will rule out θ37\theta\approx -37^\circ and favor the solution θ58\theta\approx -58^\circ. Though the decays D0Kˉ10π0D^0\to \bar K_1^0\pi^0 are color suppressed, they are comparable to and even larger than the color-allowed counterparts: Kˉ10(1270)π0K1(1270)π+\bar K_1^0(1270)\pi^0\sim K_1^-(1270)\pi^+ and Kˉ10(1400)π0>K1(1400)π+\bar K_1^0(1400)\pi^0> K_1^-(1400)\pi^+. The finite width effect of the axial-vector resonance is examined. It becomes important for a1(1260)a_1(1260) in particular when its width is near 600 MeV.Comment: 19 page

    Factorization and Nonfactorization in B Decays

    Full text link
    Using NLL values for Wilson coefficients and including the contributions from the penguin diagrams, we estimate the amount of nonfactorization in two-body hadronic B decays. Also, we investigate the model dependence of the nonfactorization parameters by performing the calculation using different models for the form factors. The results support the universality of nonfactorizable contributions in both Cabibbo-favored and Cabibbo-suppressed B decays.Comment: 17 pages, 5 figures, revte

    Final-State Phases in BDπ,DπB \to D \pi, D^* \pi, and DρD \rho Decays

    Full text link
    The final-state phases in BˉDπ,Dπ\bar{B} \to D \pi, D^* \pi, and DρD \rho decays appear to follow a pattern similar to those in DKˉπD \to \bar{K} \pi, Kˉπ\bar{K}^* \pi, and Kˉρ\bar{K} \rho decays. Each set of processes is characterized by three charge states but only two independent amplitudes, so the amplitudes form triangles in the complex plane. For the first two sets the triangles appear to have non-zero area, while for the DρD \rho or Kˉρ\bar{K} \rho decays the areas of the triangles are consistent with zero. Following an earlier discussion of this behavior for DD decays, a similar analysis is performed for B decays, and the relative phases and magnitudes of contributing amplitudes are determined. The significance of recent results on \ob \to D^{(*)0} \bar{K}^{(*)0} is noted. Open theoretical and experimental questions are indicated.Comment: 16 pages, LaTeX, 3 figures, to be submitted to Phys. Rev. D. References added; comments on new experimental results and analysi

    Resonances in radiative hyperon decays

    Get PDF
    The importance of resonances for the radiative hyperon decays is examined in the framework of chiral perturbation theory. Low lying baryon resonances are included into the effective theory and tree contributions to these decays are calculated. We find significant contributions to both the parity-conserving and parity-violating decay amplitudes and a large negative value for the asymmetry parameter in polarized Sigma^+ -> p gamma is found, in agreement with the experimental result alpha(p Sigma^+) = -0.76 +/- 0.08.Comment: 14 pages, 2 figure
    corecore