9 research outputs found

    Analyzing the 27 July 2021 rainfall-induced catastrophic landslide event in the Kutupalong Rohingya Camp in Cox’s Bazar, Bangladesh

    Get PDF
    This article critically investigates a catastrophic rainfall-induced landslide event that occurred on 27 July 2021 in the Kutupalong Rohingya Camp (KRC) in Cox’s Bazar, Bangladesh, from geological and geomorphological perspectives. Large-scale anthropogenic interventions mainly caused the disastrous landslide event in the KRC in addition to intense rainfall. Before the landslide occurrence, about 300 mm of cumulative rainfall was recorded in the previous seven days and 120 mm of rainfall during the landslide event. A preliminary investigation was conducted to understand the extent, causative factors, and landslide characteristics. The landslide is of mud-flow type, but on the nearby slope, slumping was also visible. The landslide length was about 33 m, width 31 m, and area 612 m2. The approximate volume of slope materials displaced during the landslide event was about 2450 m3. The displaced slope materials mainly were silt and sand. The landslide event caused five fatalities and damaged nearly 5000 shelters in the KRC area. The devastation from such a small landslide event was attributed to dense households on the slope’s hilltop, slope, and toe. The camp areas and host communities are subjected to frequent and fatal landslides in the years to come due to intense human interventions and climatic conditions. The modifications of the slopes have been reducing the cohesion and the shear strength of the slope materials. Therefore, it is recommended to undertake proper mitigation and preparedness measures, including developing and implementing a landslide early warning system to address the emerging humanitarian crisis in the KRC and its surroundings

    Geological and soil engineering properties of shallow landslides occurring in the Kutupalong Rohingya Camp in Cox's Bazar, Bangladesh

    Get PDF
    The Forcibly Displaced Myanmar Nationals (FDMN), historically known as ‘Rohingya’ who fled the 2017 ethnic atrocities and genocide in the Northern Rakhine State of Myanmar, took shelter in Cox’s Bazar District of Bangladesh. The camp network, known as Kutupalong Rohingya Camp (KRC), is situated in the tectonically active tertiary hilly terrain. The KRC has been experiencing hydrometeorological hazards, where landslides are frequent. This study investigated the slopes’ geological condition, engineering properties and human interventions, which influence the landslides. The exposed slopes were relatively high (> 10 m) and steep ranging from 40° to 60° that have numerous polygonal tension cracks and fissures. From the geological and geotechnical aspects, there are three successive units of slope materials: (1) residual soils of sandy silt with clay, (2) highly weathered silty sandstones and (3) shale/clay with silt and fine sand intercalations at the bottom of the slopes. Field observations revealed that most slope failures occurred in the residual soil and weathered silty sandstone units. The residual soils have a bulk density of 1.49–1.97 g/cm3, a liquid limit of 25–48%, a plasticity index of 5–16% and an undrained shear strength of 23–46 kPa. The silty sandstones have a bulk density of 1.44–1.94 g/cm3, an internal friction angle of 34°–40° and a cohesion of 0.5–13 kPa. The mineralogical composition determined by the X-ray diffraction shows low clay mineral content, which does not affect landslides. However, the slope geometry, low shear strength with strain softening properties and torrential rainfall accompanied by anthropogenic factors cause numerous landslides every year. This study will help take proper mitigation and preparedness measures for slope protection in the KRC area and surroundings

    Resilience to flash floods in wetland communities of northeastern Bangladesh

    Get PDF
    Globally, a number of catastrophic hydrometeorological hazards occurred in 2017 among which the monsoon floods in South Asia was particularly disastrous, killing nearly 1200 people in India, Nepal and Bangladesh. The wetland region (Haor) of northeastern (NE) Bangladesh was severely affected by flash floods early in 2017, affecting nearly 1 million households and damaging US $450 million worth of rice crops. This study investigates how the NE Bangladesh experienced the 2017 flash floods, and to what degree the wetland communities are vulnerable and resilience to flash floods. Focus group discussion, key informant interviews, and household questionnaire surveys (n = 80) were applied in the study area of Sunamganj district. Results from statistical analyses and regression modelling reveal that poor people are particularly vulnerable to floods but they are also more adaptive and thus resilient; middle-income households are vulnerable as they are hesitant to take up any jobs and accept flood relief; and rich households, despite being less adaptive, are able to recover from flood disasters because of wealth. This study reveals that resilience also stems from deep religious faith in the Haor inhabitants that supports communities to move on by accepting that most natural calamities such as flash floods are divine tests. This study also finds that women are particularly vulnerable and less resilient as they are not normally allowed to work outside of their homes and beyond the Haor communities due to cultural and religious reasons

    The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh

    Get PDF
    The occurrence of heavy rainfall in the south-eastern hilly region of Bangladesh makes this area highly susceptible to recurrent flash flooding. As the region is the commercial capital of Bangladesh, these flash floods pose a significant threat to the national economy. Predicting this type of flooding is a complex task which requires a detailed understanding of the river basin characteristics. This study evaluated the susceptibility of the region to flash floods emanating from within the Karnaphuli and Sangu river basins. Twenty-two morphometric parameters were used. The occurrence and impact of flash floods within these basins are mainly associated with the volume of runoff, runoff velocity, and the surface infiltration capacity of the various watersheds. Analysis showed that major parts of the basin were susceptible to flash flooding events of a ‘moderate’-to-‘very high’ level of severity. The degree of susceptibility of ten of the watersheds was rated as ‘high’, and one was ‘very high’. The flash flood susceptibility map drawn from the analysis was used at the sub-district level to identify populated areas at risk. More than 80% of the total area of the 16 sub-districts were determined to have a ‘high’-to-‘very-high’-level flood susceptibility. The analysis noted that around 3.4 million people reside in flash flood-prone areas, therefore indicating the potential for loss of life and property. The study identified significant flash flood potential zones within a region of national importance, and exposure of the population to these events. Detailed analysis and display of flash flood susceptibility data at the sub-district level can enable the relevant organizations to improve watershed management practices and, as a consequence, alleviate future flood risk

    Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems

    No full text
    The objective of this study was to evaluate the spatial distribution of flood shelters in relation to flood hazards in a resource-poor country. Flood hazard estimates were developed from multi-temporal flood-affected frequency and floodwater depth maps. It is intended that the results could support non-structural flood management. In addition, the location of vulnerable housing units was mapped and their accessibility to shelters was computed with the aid of spatial techniques using a geographic information system. A subset of the Dhaka Metropolitan Development Plan zone and Dhaka megacity, covering an area of 878 km2, was used as a case study since this area is likely to experience more frequent and intense flooding in coming years as a result of rapid urbanisation and climatic change. Using three different criteria, the study identified that a total of 5537 buildings, out of 6342 candidate structures, can be used as emergency shelters during floods, and approximately 145,000 dwellings (19.3 % of total residential units) of various types were located in places that are prone to flood. Further, many (3500 of 5537) of the identified shelters were not sufficiently close to vulnerable dwellings to protect approximately 496,000 potential flood victims during an emergency. There were 26.4 % of the total residents living in vulnerable housing units. In addition, 1098 flood shelters were distributed over five catchments in the study area, although in close proximity to vulnerable residents, do not have the capacity to house the number of people who could potentially seek refuge there. This study, the first of its kind in Dhaka, can assist urban planners and emergency managers in developing an effective evacuation plan for an imminent flood disaster as the city currently lacks any disaster management plan
    corecore