583 research outputs found

    Detection of Excess Hard X-ray Emission from the Group of Galaxies HCG62

    Get PDF
    From the group of galaxies HCG62, we detected an excess hard X-ray emission in energies above 4\sim 4 keV with \A SCA. The excess emission is spatially extended up to 10\sim10' from the group center, and somewhat enhanced toward north. Its spectrum can be represented by either a power-law of photon index 0.8-2.7, or a Bremsstrahlung of temperature >6.3>6.3 keV. In the 2-10 keV range, the observed hard X-ray flux, (1.0±0.3)×1012(1.0\pm0.3)\times10^{-12} erg cm2^{-2} s1^{-1}, implies a luminosity of (8.0±2.0)×1041(8.0\pm2.0)\times10^{41} erg s1^{-1} for a Hubble constant of 50 km s1^{-1} Mpc1^{-1}. The emission is thus too luminous to be attributed to X-ray binaries in the memb er galaxies. We discuss possible origin of the hard X-ray emission.Comment: 6 pages, 3 Postscript figures, uses emulateapj.sty. Accepted for publication in the Astrophysical Journal Letter

    Mid-Pliocene global climate simulation with MRI-CGCM2.3: set-up and initial results of PlioMIP Experiments 1 and 2

    Get PDF
    The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions

    Measuring energy dependent polarization in soft gamma-rays using Compton scattering in PoGOLite

    Full text link
    Linear polarization in X- and gamma-rays is an important diagnostic of many astrophysical sources, foremost giving information about their geometry, magnetic fields, and radiation mechanisms. However, very few X-ray polarization measurements have been made, and then only mono-energetic detections, whilst several objects are assumed to have energy dependent polarization signatures. In this paper we investigate whether detection of energy dependent polarization from cosmic sources is possible using the Compton technique, in particular with the proposed PoGOLite balloon-experiment, in the 25-100 keV range. We use Geant4 simulations of a PoGOLite model and input photon spectra based on Cygnus X-1 and accreting magnetic pulsars (100 mCrab). Effective observing times of 6 and 35 hours were simulated, corresponding to a standard and a long duration flight respectively. Both smooth and sharp energy variations of the polarization are investigated and compared to constant polarization signals using chi-square statistics. We can reject constant polarization, with energy, for the Cygnus X-1 spectrum (in the hard state), if the reflected component is assumed to be completely polarized, whereas the distinction cannot be made for weaker polarization. For the accreting pulsar, constant polarization can be rejected in the case of polarization in a narrow energy band with at least 50% polarization, and similarly for a negative step distribution from 30% to 0% polarization.Comment: 11 pages, 12 figures; updated to match version accepted for publication in Astroparticle Physics (only minor changes

    Performance of a Low Noise Front-end ASIC for Si/CdTe Detectors in Compton Gamma-ray Telescope

    Full text link
    Compton telescopes based on semiconductor technologies are being developed to explore the gamma-ray universe in an energy band 0.1--20 MeV, which is not well covered by the present or near-future gamma-ray telescopes. The key feature of such Compton telescopes is the high energy resolution that is crucial for high angular resolution and high background rejection capability. The energy resolution around 1 keV is required to approach physical limit of the angular resolution due to Doppler broadening. We have developed a low noise front-end ASIC (Application-Specific Integrated Circuit), VA32TA, to realize this goal for the readout of Double-sided Silicon Strip Detector (DSSD) and Cadmium Telluride (CdTe) pixel detector which are essential elements of the semiconductor Compton telescope. We report on the design and test results of the VA32TA. We have reached an energy resolution of 1.3 keV (FWHM) for 60 keV and 122 keV at 0 degree C with a DSSD and 1.7 keV (FWHM) with a CdTe detector.Comment: 6 pages, 7 figures, IEEE style file, to appear in IEEE Trans. Nucl. Sc

    Atmospheric Rivers Bring More Frequent and Intense Extreme Rainfall Events Over East Asia Under Global Warming

    Get PDF
    Portions of East Asia often experienced extremely heavy rainfall events over the last decade. Intense atmospheric rivers (ARs), eddy transports of moisture over the middle latitudes, contributed significantly to these events. Although previous studies pointed out that landfalling ARs will become more frequent under global warming, the extent to which ARs produce extreme rainfall over East Asia in a warmer climate remains unclear. Here we evaluate changes in the frequency and intensity of AR-related extreme heavy rainfall under global warming using a set of high-resolution global and regional atmospheric simulations. We find that both the AR-related water vapor transport and rainfall intensify over the southern and western slopes of mountains over East Asia in a warmer climate. ARs are responsible for a large fraction of the increase in the occurrence of extreme rainfall in boreal spring and summer. ARs will bring unprecedented extreme rainfall over East Asia under global warming

    Climatological relationship between warm season atmospheric rivers and heavy rainfall over east asia

    Get PDF
    Eddy transport of atmospheric water vapor from the tropics is important for rainfall and related natural disasters in the middle latitudes. Atmospheric rivers (ARs), intense moisture plumes that are typically associated with extratropical cyclones, often produce heavy precipitation upon encountering topography on the west coasts of mid-latitude North America and Europe. ARs also occur over the northwestern Pacific and sometimes cause floods and landslides over East Asia, but the climatological relationship between ARs and heavy rainfall in this region remains unclear. Here we evaluate the contribution of ARs to the hydrological cycle over East Asia using high-resolution daily rainfall observations and an atmospheric reanalysis during 1958-2007. Despite their low occurrence, ARs account for 14-44 % of the total rainfall and 20-90 % of extreme heavy-rainfall events during spring, summer, and autumn. AR-related extreme rainfall is especially pronounced over western-to-southeastern slopes of terrains over the Korean Peninsula and Japan, owing to strong orographic effects and a stable direction of low-level moisture flows. A strong relationship between warm-season AR heavy rainfall and preceding-winter El Niño is identified since the 1970s, suggesting the potential of predicting heavy-rainfall risk over Korea and Japan at seasonal leads

    Ocean warming pattern effects on future changes in East Asian atmospheric rivers

    Get PDF
    Atmospheric rivers (ARs), intense water vapor transports associated with extra-tropical cyclones, frequently bring heavy rainfalls over mid-latitudes. Over East Asia, landfalling ARs result in major socio-economic impacts including widespread floods and landslides; for example, western Japan heavy rainfall in July 2018 killed more than 200 people. Using results of high-resolution atmospheric model ensemble simulations, we examine projected future change in summertime AR frequency over East Asia. Different sea surface temperature (SST) warming patterns derived from six atmosphere-ocean coupled model simulations were assumed to represent uncertainty in future SST projections. The rate of increase in the frequency of landfalling ARs over summertime East Asia is on average 0.9% K-1 and is dependent on SST warming patterns. Stronger warming over the North Indian Ocean and South China Sea or weaker warming over the tropical central Pacific produce more frequent landfalling ARs over East Asia. These patterns are similar to the co-variability of SST, atmospheric circulation, and ARs over the western North Pacific found on the interannual time scale. The results of this study suggest that the natural disaster risk related to landfalling ARs should increase over East Asia under global warming and SSTs over the Indo-Pacific region holds the key for a quantitative projection

    Impacts of seasonal transitions of enso on atmospheric river activity over east Asia

    Get PDF
    Atmospheric rivers (ARs), which are narrow water vapor transport bands over the mid-latitudes, often have great socio-economic impacts over East Asia. Although summertime AR activity over East Asia is strongly induced by preceding-winter El Niño development, the extent to which seasonal transitions of El Niño–Southern Oscillation (ENSO) from winter to summer affect the AR activity remains unclear. Here, we examine the relationship between the seasonal transitions of ENSO and the summertime AR activity over East Asia using an atmospheric reanalysis and high-resolution atmospheric general circulation model (AGCM) ensemble simulations. A rapid transition from preceding-winter El Niño to summertime La Niña results in more AR occurrence over northern East Asia via the northward expansion of an anomalous low-level anticyclone over the western North Pacific compared with sustained or decayed El Niño cases. The northward expansion of the anticyclone is consistent with a steady response of the atmosphere to the anomalous condensation heating over the Maritime Continent and equatorial Pacific. Meridional positions of the extratropical AR occurrence and circulation anomalies are different between the reanalysis and AGCM simulations, which is possibly contributed by a limited sample size and/or AGCM biases and suggests that the seasonal prediction of AR-related natural disaster risk over East Asia on a regional scale remains a challenge

    ASCA Observations of Temperature Structure and Metal Distribution in the Perseus Cluster of Galaxies

    Full text link
    Large-scale distributions of hot-gas temperature and Fe abundance in the Perseus cluster have been studied with multi-pointing observations by the GIS instrument on ASCA. Within a radius of 20' from the cluster center, the energy spectra requires two temperature components, in which the cool component indicates kT ~ 2 keV and the hot-component temperature shows a significant decline from about 8 keV to 6 keV toward the center. In the outer region of the cluster, the temperature shows a fluctuation with an amplitude of about 2 keV and suggest that a western region at ~16' from the cluster center is relatively hotter. As for the Fe abundance, a significant decline with radius is detected from 0.44 solar at the center to ~0.1 solar at a 50' offset region. If observed Fe-K line intensity within 4' from the center is suppressed by a factor of 2 due to the resonance scattering effect, the corrected Fe mass density follows the galaxy distribution. Finally, our results do not support the large-scale velocity gradients previously reported from the same GIS data.Comment: 13 pages, 8 figures, Latex(pasj95.sty),accepted in PAS

    ASCA Detection of Pulsed X-ray Emission from PSR J0631+1036

    Get PDF
    ASCA's long look at the 288 millisecond radio pulsar, PSR J0631+1036, reveals coherent X-ray pulsation from this source for the first time. The source was first detected in the serendipitous Einstein observation and later identified as a radio pulsar. Possible pulsation in the gamma-ray band has been detected from the CGRO EGRET data (Zepka, et al. 1996). The X-ray spectrum in the ASCA band is characterized by a hard power-law type emission with a photon index of about 2.3, when fitted with a single power-law function modified with absorption. An additional blackbody component of about 0.14 keV increases the quality of the spectral fit. The observed X-ray flux is 2.1e-13 ergs/s/cm2 in the 1-10 keV band. We find that many characteristics of PSR J0631+1036 are similar to those of middle-aged gamma-ray pulsars such as PSR B1055-52, PSR B0633+17 (Geminga), and PSR B0656+14.Comment: To appear in ApJ Letter
    corecore