28 research outputs found

    Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications

    Get PDF
    Most studies on lipid lowering diets have focused on the total content of saturated, polyunsaturated and monounsaturated fatty acids. However, the distribution of these fatty acids on the triacylglycerol (TAG) molecule and the molecular TAG species generated by this stereospecificity are characteristic for various native dietary TAGs. Fat randomization or interesterification is a process involving the positional redistribution of fatty acids, which leads to the generation of new TAG molecular species. A comparison between native and randomized TAGs is the subject of this review with regards to the role of stereospecificity of fatty acids in metabolic processing and effects on fasting lipids and postprandial lipemia. The positioning of unsaturated versus saturated fatty acids in the sn-2 position of TAGs indicate differences in early metabolic processing and postprandial clearance, which may explain modulatory effects on atherogenecity and thrombogenecity. Both human and animal studies are discussed with implications for human health

    Letter to the editor: reply to Destaillats, interesterified fats to replace trans fat

    Get PDF
    Although more sophisticated ways exist to analyze TG-MS than that applied in our study, the approach was able to identify the TG species sufficiently to emphasize the importance of TG structure. The criticism that differences in dietary fat saturation alone would explain the lipoprotein response across diets is not supported by careful scrutiny of the facts. Nor does fat saturation per se address the observed impact that fat structure had on insulin/glucose metabolism

    Stearic acid-rich interesterified fat and trans-rich fat raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans

    Get PDF
    BACKGROUND: Dietary trans-rich and interesterified fats were compared to an unmodified saturated fat for their relative impact on blood lipids and plasma glucose. Each fat had melting characteristics, plasticity and solids fat content suitable for use as hardstock in margarine and other solid fat formulations. METHODS: Thirty human volunteers were fed complete, whole food diets during 4 wk periods, where total fat (~31% daily energy, >70% from the test fats) and fatty acid composition were tightly controlled. A crossover design was used with 3 randomly-assigned diet rotations and repeated-measures analysis. One test fat rotation was based on palm olein (POL) and provided 12.0 percent of energy (%en) as palmitic acid (16:0); a second contained trans-rich partially hydrogenated soybean oil (PHSO) and provided 3.2 %en as trans fatty acids plus 6.5 %en as 16:0, while the third used an interesterified fat (IE) and provided 12.5 %en as stearic acid (18:0). After 4 wk the plasma lipoproteins, fatty acid profile, as well as fasting glucose and insulin were assessed. In addition, after 2 wk into each period an 8 h postprandial challenge was initiated in a subset of 19 subjects who consumed a meal containing 53 g of test fat. RESULTS: After 4 wk, both PHSO and IE fats significantly elevated both the LDL/HDL ratio and fasting blood glucose, the latter almost 20% in the IE group relative to POL. Fasting 4 wk insulin was 10% lower after PHSO (p > 0.05) and 22% lower after IE (p < 0.001) compared to POL. For the postprandial study the glucose incremental area under the curve (IAUC) following the IE meal was 40% greater than after either other meal (p < 0.001), and was linked to relatively depressed insulin and C-peptide (p < 0.05). CONCLUSION: Both PHSO and IE fats altered the metabolism of lipoproteins and glucose relative to an unmodified saturated fat when fed to humans under identical circumstances

    Blood fatty acid status and clinical outcomes in dialysis patients: a systematic review

    Get PDF
    Blood fatty acids (FAs) are derived from endogenous and dietary routes. Metabolic abnormalities from kidney dysfunction, as well as cross-cultural dietary habits, may alter the FA profile of dialysis patients (DP), leading to detrimental clinical outcomes. Therefore, we aimed to (i) summarize FA status of DP from different countries, (ii) compare blood FA composition between healthy controls and DP, and (iii) evaluate FA profile and clinical endpoints in DP. Fifty-three articles from 1980 onwards, reporting FA profile in hemodialysis and peritoneal DP, were identified from PubMed, Embase, and the Cochrane library. Studies on pediatric, predialysis chronic kidney disease, acute kidney injury, and transplant patients were excluded. Moderate to high levels of n-3 polyunsaturated fatty acids (PUFA) were reported in Japan, Korea, Denmark, and Sweden. Compared to healthy adults, DP had lower proportions of n-3 and n-6 PUFA, but higher proportion of monounsaturated fatty acids. Two studies reported inverse associations between n-3 PUFAs and risks of sudden cardiac death, while one reported eicosapentaenoic acid + docosahexaenoic acid)/arachidonic acid ratio was inversely associated with cardiovascular events. The relationship between all-cause mortality and blood FA composition in DP remained inconclusive. The current evidence highlights a critical role for essential FA in nutritional management of DP

    Alpha-tocotrienol is the most abundant tocotrienol isomer circulated in plasma and lipoproteins after postprandial tocotrienol-rich vitamin E supplementation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tocotrienols (T3) and tocopherols (T), both members of the natural vitamin E family have unique biological functions in humans. T3 are detected in circulating human plasma and lipoproteins, although at concentrations significantly lower than α-tocopherol (α-T). T3, especially α-T3 is known to be neuropotective at nanomolar concentrations and this study evaluated the postprandial fate of T3 and α-T in plasma and lipoproteins.</p> <p>Methods</p> <p>Ten healthy volunteers (5 males and 5 females) were administered a single dose of vitamin E [526 mg palm tocotrienol-rich fraction (TRF) or 537 mg α-T] after 7-d pre-conditioning on a T3-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of T and T3 isomers in plasma, triacylglycerol-rich particles (TRP), LDL, and HDL were measured at each postprandial interval.</p> <p>Results</p> <p>After TRF supplementation, plasma α-T3 and γ-T3 peaked at 5 h (α-T3: 4.74 ± 1.69 μM; γ-T3: 2.73 ± 1.27 μM). δ-T3 peaked earlier at 4 h (0.53 ± 0.25 μM). In contrast, α-T peaked at 6 h (30.13 ± 2.91 μM) and 8 h (37.80 ± 3.59 μM) following supplementation with TRF and α-T, respectively. α-T was the major vitamin E isomer detected in plasma, TRP, LDL, and HDL even after supplementation with TRF (composed of 70% T3). No T3 were detected during fasted states. T3 are detected postprandially only after TRF supplementation and concentrations were significantly lower than α-T.</p> <p>Conclusions</p> <p>Bio-discrimination between vitamin E isomers in humans reduces the rate of T3 absorption and affects their incorporation into lipoproteins. Although low absorption of T3 into circulation may impact some of their physiological functions in humans, T3 have biological functions well below concentration noted in this study.</p

    Dietary fatty acid intake in hemodialysis patients and associations with circulating fatty acid profiles: a cross-sectional study

    Get PDF
    Objectives: The aims of this study were threefold: first, to assess the dietary fatty acid (FA) intake and blood FA status in Malaysian patients on hemodialysis (HD); second, to examine the association between dietary FA intakes and blood FA profiles in patients on HD; and third, to determine whether blood FAs could serve as a biomarker of dietary fat intake quality in these patients. Methods: Using 3 d of dietary records, FA intakes of 333 recruited patients were calculated using a food database built from laboratory analyses of commonly consumed Malaysian foods. Plasma triacylglycerol (TG) and erythrocyte FAs were determined by gas chromatography. Results: High dietary saturated fatty acid (SFA) and monounsaturated fatty acid (MUFA) consumption trends were observed. Patients on HD also reported low dietary ω-3 and ω-6 polyunsaturated fatty acid (PUFA) consumptions and low levels of TG and erythrocyte FAs. TG and dietary FAs were significantly associated respective to total PUFA, total ω-6 PUFA, 18:2 ω-6, total ω-3 PUFA, 18:3 ω-3, 22:6 ω-3, and trans 18:2 isomers (P < 0.05). Contrarily, only dietary total ω-3 PUFA and 22:6 ω-3 were significantly associated with erythrocyte FAs (P < 0.01). The highest tertile of fish and shellfish consumption reflected a significantly higher proportion of TG 22:6 ω-3. Dietary SFAs were directly associated with TG and erythrocyte MUFA, whereas dietary PUFAs were not. Conclusion: TG and erythrocyte FAs serve as biomarkers of dietary PUFA intake in patients on HD. Elevation of circulating MUFA may be attributed to inadequate intake of PUFAs

    Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    Get PDF
    Abstract Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.</p

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio
    corecore